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SUNDEW: An Ensemble of Predictors for
Case-Sensitive Detection of Malware

Sareena Karapoola, Nikhliesh Singh, Chester Rebeiro, and Kamakoti V

Abstract—Malware programs are diverse, with varying objectives, functionalities, and threat levels ranging from mere pop-ups to
financial losses. Consequently, their run-time footprints across the system differ, impacting the optimal data source (Network, Operating
system (OS), Hardware) and features that are instrumental to malware detection. Further, the variations in threat levels of malware
classes affect the user requirements for detection. Thus, the optimal tuple of 〈data-source, features, user-requirements〉 is different
for each malware class, impacting the state-of-the-art detection solutions that are agnostic to these subtle differences.

This paper presents SUNDEW, a framework to detect malware classes using their optimal tuple of 〈data-source, features,
user-requirements〉. SUNDEW uses an ensemble of specialized predictors, each trained with a particular data source (network,
OS, and hardware) and tuned for features and requirements of a specific class. While the specialized ensemble with a holistic view
across the system improves detection, aggregating the independent conflicting inferences from the different predictors is challenging.
SUNDEW resolves such conflicts with a hierarchical aggregation considering the threat-level, noise in the data sources, and prior domain
knowledge. We evaluate SUNDEW on a real-world dataset of over 10,000 malware samples from 8 classes. It achieves an F1-Score of
one for most classes, with an average of 0.93 and a limited performance overhead of 1.5%.

Index Terms—Dynamic Malware Analysis, Machine Learning for Security, Cross-dimensional Malware Analysis, Case-sensitive
Detection, Multi-input Ensemble
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1 INTRODUCTION

MALWARE attacks against enterprises have proliferated
at an alarming scale. Industry analysis reports almost

17 million malware programs targeting businesses in 2021,
with estimated financial losses in billions [1]. The ramifica-
tions of these attacks range from user-annoying popups to
ex-filtration of sensitive data, financial loss, extortion, and
even sabotaging critical infrastructures. Accordingly, mal-
ware programs can be grouped into classes based on their
objectives and functionalities – Potentially Unwanted Appli-
cations (PUA) pop up unwelcome advertisements; Bankers
stealthily steal financial credentials; Backdoors open hidden
access paths for a remote adversary; Spyware stealthily
exfiltrates sensitive data of its victim; Downloaders install a
malicious payload; Cryptominers mine cryptocurrencies for
the adversary while Ransomware encrypts the data victim
for extortion.

The diversity in malware classes can impact the data-
source, features and the user-requirements that are instrumen-
tal in analyzing and detecting malware, as illustrated in Fig-
ure 1. First, the optimal run-time data-source that can detect a
malware class differs based on the functionality. Backdoors
maintain consistent communication with a remote adver-
sary, leaving strong indicators on the network, whereas spy-
ware are likely to leave indicators on the operating system
(OS) when they scan a large number of files. On the other
hand, ransomware are prone to trigger distinct hardware
events due to the encryption they perform. Second, malware
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Fig. 1: The optimal tuple 〈data-source, features, user-
requirements〉 varies for each malware class. The optimal
run-time data-source and features that can distinguish a
malware class from benign applications differ based on the mal-
ware functionality. Further, low-risk malware (e.g., spyware)
typically have stricter classification thresholds than high-risk
malware (e.g., ransomware).

classes differ in the features that best identify them. For
example, in the OS, a high number of encryptions and write-
to files are indicators of ransomware, whereas a high rate
of file-system and registry reads are indicators of spyware.
Third, the user’s requirements vary for different malware
classes. For high-risk malware like ransomware, users are
more likely to tolerate false positives than low-risk mal-
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(b) Single-input ensembles (c) Multi-input ensemble (Proposed in this paper)
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Fig. 2: Malware detection mechanisms based on (a) single clas-
sifier; (b) single-input ensembles; and, (c) multi-input ensemble
(proposed in this paper), for an example case of three classes
(benign, malware classes A and B).

ware like spyware and PUAs. Thus, a model for high-risk
malware would ideally need lower classification thresholds
than low-risk malware. Hence, detecting a malware class
can benefit in accuracy and false-positive guarantees with
models trained with the optimal data-source (network, OS,
or hardware) and fine-tuned for class-specific features and
classification thresholds. In fact, we observe that the optimal
tuple of 〈data-source, features, user-requirements〉 is
unique for each malware class. Additionally, the optimal
tuple is also sensitive to the system load conditions, which
can infiltrate noise into the run-time data.

The intuitive approach to leverage the optimal tuple for
any malware class is to have different specialized predictors,
wherein each predictor is fine-tuned for a specific data-
source, class-specific features, and requirements. Naı̈ve so-
lutions include hyper-specialized predictors for classes such
as ransomware [32], which fail on other classes of malware.
On the other hand, most works in literature employ sin-
gle generic classifiers, that are too generalized to support
such a specialized handling of different classes (Refer to
Figure 2a) [2]–[12]. Alternative works explore an ensemble-
based classifiers for detection [13]–[23]. Such solutions train
a collection of predictors either in parallel or sequentially on
the same input data formed by combining data from one [13]–
[20] or multiple sources [21]–[23]. Figure 2b illustrates one
such single-input ensemble that trains predictors in parallel.
Primarily, these approaches aim to minimize the detection
error by averaging the predictions from the individual pre-
dictors (when trained in parallel) or learning adaptively
(when trained in sequence). Either way, same-input ensembles
cannot achieve the optimal tuple for detection as they do not
support fine-tuning individual predictors to pursue class-
specific features and requirements.

Figure 2c illustrates our proposed ensemble, which we
call a multi-input ensemble of specialized predictors, wherein
each predictor is trained using a different input data-source
to detect a specific malware class from benign applications.
However, given an unknown program sample, such fine-
grained specialization alone is not sufficient to leverage
the optimal predictor (i.e., achieve the optimal tuple) in
the ensemble. The primary challenge lies in arriving at a
consensus from the independent, conflicting predictions from
different specialized predictors for any input test program.
As each predictor is tuned differently, their inferences are
likely to conflict. Naı̈ve approaches such as majority or

average of individual predictions [13], [17], [18], [20] may
not be optimal. This is because each predictor has different
definitions of boundaries between malware and benign
behavior and deals with different noise levels in the input
from different data sources.

This paper presents SUNDEW, a detection framework
that employs a multi-input ensemble of predictors with an
insightful aggregation mechanism to leverage the optimal
tuple of 〈data-source, features, user-requirements〉 for
any input test program. SUNDEW has three components,
each utilizing different data sources across the system stack
to provide a holistic view of malware activity. Internally,
each component has multiple specialized predictors, each
tuned to differentiate a specific malware class from benign
applications using data collected from the particular data
source (network, OS, or hardware) (Refer to Figure 2c). To
resolve the conflicts between the predictors, SUNDEW uses
a two-level hierarchical structure of aggregator functions
that first collates the inferences from different specialized
predictors inside each component and later aggregates the
inferences from the three data sources (Refer to Figure 2c).
These functions employ a combination of predictor statis-
tics, prior knowledge of the capabilities of each predictor,
risk factor, and the current system load to aggregate infer-
ences to an optimal prediction. Thus, unlike prior works, the
holistic view of malware activity and specialization enable
SUNDEW to achieve a case-sensitive analysis and detection,
thus improving the accuracy and resilience while ensuring
class-specific false-positive guarantees. Following are the
contributions of the paper:

1) A reliable malware analysis framework, SUNDEW,
with a holistic view of malware activity across the
system, an ensemble of specialized predictors, and
aggregator functions to help derive the best-case
prediction for any malware class (Section 5).

2) An evaluation of various design choices for the ag-
gregator functions that resolve conflicts between the
independent specialized predictors. Given an un-
known sample, the two-level aggregation in SUN-
DEW relays the inference of the specialized predic-
tor to the output without any loss, while boosting
the performance of the optimal predictor by at least
1.42% (Section 6).

3) An evaluation of SUNDEW on a rich dataset that
presents precise and comprehensive real-world mal-
ware behavior of more than 10, 000 malware sam-
ples, including cryptominers, bankers, spyware,
backdoors, ransomware, downloaders, deceptors,
and potentially unwanted applications (PUAs).
SUNDEW can achieve an F1-Score of 1 for most
malware classes, an average of 0.93 for any malware
class, and 0.82 even under highly noisy conditions,
with an average overhead as low as 1.5% at the end-
host machines (Section 7).

4) To the best of our knowledge, SUNDEW is the
first to provide a multi-input ensemble for a case-
sensitive detection of malware classes. It evaluates
the run-time inputs from three system components,
risk factors, and the dynamic system noise, to detect
malware reliably. SUNDEW is 10% more accurate,
with 89% lower false positives, than prior state-of-
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the-art predictors based on network [2], OS [19],
hardware [20] and ensembles [23] that do not con-
sider a holistic view of malware activity and multi-
input ensemble of specialized predictors [2]–[28].

Following is the organization of the rest of the paper.
Section 2 provides the necessary background for the paper.
Section 3 highlights the motivation for the need for an en-
semble of predictors. Section 4 presents the related work. We
discuss the high-level overview of SUNDEW in Section 5.
Section 6 discusses the use of different insights to effectively
aggregate predictions in SUNDEW. Section 7 presents the
implementation of SUNDEW and results of our evaluation.
Section 8 discusses the limitations of SUNDEW and future
work. Finally, Section 9 concludes the paper.

2 BACKGROUND

Malware are programs with malicious intents. With differ-
ing attack objectives, they pose varying levels of risk to
system users. Ransomware that can sabotage an entire sys-
tem is a high-risk malware, whereas adware or potentially
unwanted applications (PUA) that are mere user-annoying
in nature are low-risk malware [29]. Table 1 presents a few
notable malware classes with their objectives and corre-
sponding risk levels.

Run-time data sources for malware detection. Malware
behavioral analysis and detection is a widely studied and
mature field [2]–[28], [30]. The detection mechanisms use
trails of malware activity, observable at different system
components which include – (1) Network (e.g. malware
communications to its command-and-control server); (2)
Operating system (e.g. system calls); and, (3) Hardware (e.g.
micro-architectural events).

These behavioral trails provide different abstractions
of malware behavior. The network trails provide insights
into malware communications to external entities, including
its command-and-control servers. The features of interest
include the unencrypted meta-data about connections, do-
mains contacted, TLS handshakes, and X.509 certificates
from HTTPS/HTTP flows. In contrast, the OS component
captures the malware interactions with the system software
when it attempts to remain stealthy, achieve persistence,
and execute its objective. These interactions include the file
system, registry, process, and network-related system call
traces of the malware. Though the system call traces include
network communications (TCP Send/Receive), they are at
a higher abstraction as compared to that captured at the
network component. Additionally, malware activities also
trigger specific micro-architectural events that can be ob-
served using special registers called Hardware Performance
Counters (HPCs) [31]. A few notable HPC events used
for malware detection include cache hits/misses at various
levels, branch instruction response, and CPU activity. These
behavioral trails are used to train detection models that pre-
dominately rely on machine learning (ML) to differentiate
malicious and benign behavior.

Relevance of HPC in malware detection. Though the use
of HPCs for malware detection is much debated, they are
found to be beneficial when used in the right way, using in-
terrupt and context switch management [32]. Additionally,

TABLE 1: Objectives and risk levels of various malware classes

Malware
Class Objectives Risk

level [29]

User
require-
ments

Cryptominer
Exploit computing resources of

the victim to mine
cryptocurrencies

High High TPR

Banker Steal financial credentials High High TPR

Spyware
Infiltrate and keep gleaning
sensitive information for an

extended period
Medium Low FPR

Backdoor
Grant alternate covert pathways
to system resources, bypassing

access control

Very
High High TPR

Ransomware
Sabotage user files and extort a

ransom from the user for
restoration

Very
High High TPR

PUA
Pop-up annoying

advertisements and
inappropriate content

Low Low FPR

Downloader
Covertly download other

malware from a remote server
to execute and infect

Low Low FPR

Deceptor
Bypass the system with close to

benign behavior and
adware-like payload

Low Low FPR

with minimal instrumentation required in the HPC trails
before they can be fed to the models and their limited per-
formance overheads, HPC-based detection enables a trade-
off between accuracy and overhead in malware detection.

User Requirements. The detection models are fine-tuned
for an optimal trade-off between two orthogonal user re-
quirements – (1) a high true-positive rate (TPR), with some
tolerance to mispredictions, to detect as many malware as
possible; or a (2) a low false-positive rate (FPR), with no tol-
erance to mispredictions, to prevent any impact on benign
applications. These requirements are, in turn, dependent on
the risk level of the malware. Users would prioritize a high
TPR for high-risk malware while preferring a low FPR for
adware/PUA that are very similar to benign applications
in behavior. Table 1 provides preferred user requirements
based on the risk level of different malware classes.

3 MOTIVATION

In this section, we analyze the differences in malware run-
time activity and present our observations that motivate
the need for a case-sensitive analysis of malware. To this
end, we study the difference in the behavior of malware
classes from benign applications observable across the three
data-sources. For each class, we assess the difference using
specialized binary ML models, each trained with behavioral
data of 1000 programs, including the malware class and
benign applications. Based on our observations, we make
the following claims on the benefits of exploring multiple
data-sources and class-specific features and addressing user-
specific requirements.

C-1: Detection can benefit in performance from a cross-
dimensional view of malware activity. Malware classes
differ in their actions. In turn, the actions determine the
quantum of malware activity across the system: network,
OS, and hardware. Figure 3 indicates the distinguishabil-
ity of activities of different malware classes from benign
applications across the three data-sources. The darker the
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Fig. 3: Differences between malware and benign behavior for different
classes across the three data data-sources. The darker the color, the more
distinguishable are the activities from benign applications.

color, the more distinguishable are the activities from be-
nign applications. The network shows a high distinction
in activities for banker, backdoor, and deceptor, whereas
OS shows distinguishable activity for ransomware and spy-
ware. Similarly, hardware shows distinct activity in the case
of ransomware. Hence, some classes are better aligned to
be detected using a specific data-source than others. We
explain this with an example of backdoor, spyware, and
ransomware (Refer to Figure 1). A backdoor creates a re-
verse shell, escalates privileges, and provides code injection
capabilities to a remote adversary. However, the constant
factor in its attempt to execute any command from the
adversary is its sustained communication with the remote
server. We observe that the average duration of network
flows for a backdoor is notably different from other classes.
On the other hand, spyware aims to gather information
about the victim. Hence, it scans the filesystem, leaving
distinct trails at the OS, while its network activities are
not significantly distinguishable from benign applications.
Similarly, ransomware scans the files at the victim to encrypt
and make them inaccessible. In the process, a high rate of
reading and writing files is observable at the OS. However,
the high encryption rate leaves a significant fingerprint of
micro-architectural events visible at the hardware. Hence, it
is beneficial to explore multiple data-sources to get a complete
picture of malware activity, and build appropriate defenses.

C-2: Detection can benefit in resilience by employing
all data-sources. The data collected at the network and
hardware is affected by other processes executing in the
system. With an increase in system load (i.e., the number of
processes), the network communications of other processes
get induced into the network data. Similarly, other processes
sharing micro-architectural resources in the system can af-
fect the hardware performance counters. In contrast, the
OS data is collected only for the specific PID and hence is
agnostic to the system load. Thus, it is beneficial to employ
multiple data-sources for resilient malware detection.

C-3: Detection can benefit from class-specific features.
Within each data-source, malware classes differ in the fea-
tures that best express their maliciousness. As an example,
in hardware, the performance counter event, which counts
the number of switches from the Decode Stream Buffer
(DSB) to the Micro-instruction Translation Engine (MITE),
DSB2MIT SW CNT is empirically one of the most important
features in classifying ransomware from benign applica-
tions. However, for spyware, the corresponding feature is
the event M LD Ret L1Hit, which counts retired loads that
encounter a hit in the L1 cache in a specific cache coherency
state. Thus, it is beneficial to have predictors specialized for class-
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Fig. 4: Prior detection mechanisms differ in specialized handling of
malware classes based on the run-time data source and the machine
learning models they employ.

specific features rather than a generic approach.

C-4: Detection can benefit if fine-tuned to appropriate user
requirements. System users respond differently to different
malware classes. For instance, users would want to kill
ransomware as soon as possible to restrict further damage.
Hence, models for high-risk malware (e.g., ransomware,
backdoor) target a high true-positive rate to detect every
malware sample, while tolerating some false positives. In
contrast, users are comparatively lenient to low-risk mal-
ware (e.g., PUA and deceptor) that are mere user annoying
in nature. Users would prefer to kill such malware only if
the prediction is precise to reduce any impact on benign
applications. Thus, false positives are a concern for such
malware. The predictor classification threshold controls the
trade-off between the true-positive rate (TPR) and the false-
positive rate (FPR). High-risk malware would require lower
thresholds to promote high TPR, whereas low-risk malware
would require stricter thresholds to reduce FPR. Hence, it
is beneficial to have predictors specialized for class-specific user
requirements.

In essence, the optimal tuple 〈data-
source, features, user-requirement〉 for each malware
class is different, making it essential to have a holistic view
of the data-sources and specialized models to improve
detection efficiency.

4 RELATED WORK

Malware analysis and detection using run-time behavior
have been extensively explored in literature [2]–[28], [30],
[33]. Figure 4 compares the highly cited prior works in the
last decade based on the run-time data sources and the
machine learning models they employ to cater to different
malware classes.

Run-time data sources. Most prior works employ run-time
data from a single system component to detect malware
(refer to cells I and IV in Figure 4). These include trails
from the network [2], [4], [6], [7], [13]–[16], [24], [25], op-
erating system (OS) [5], [11], [19], [28], or hardware [3], [8]–
[10], [17], [18], [20], [26], [27], [30], [33]. Alternatively, few
works employ a combination of features extracted from the
network and OS (refer to cells II and V in Figure 4 [12],
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[21]–[23]). While the multiple inputs from network and OS
can increase the detection accuracy, these solutions can miss
indicators of classes like ransomware that have high micro-
architectural activity (refer to C-1 in Section 3). Unlike prior
solutions, SUNDEW employs a comprehensive view of mal-
ware activity across the computing stack (cell IX), including
hardware, thus improving the accuracy and resilience of
detection (refer to C-1 and C-2 in Section 3).

Generic vs. Specialized models. State-of-the-art solutions
in dynamic analysis use different detection models, as
shown in Figure 2 and in the columns of Figure 4. While
these models can provide a binary or multi-class prediction,
internally, they either use a single classifier (cells I and II) or
a same-input ensemble of predictors (cells IV and V). A single
classifier can use data from a single (cell I [2]–[11], [24]–[28],
[30], [33]) or multiple sources (cell II [12]). Though relatively
light-weight, most single predictors are too generalized to
support any specialization [2]–[12], [24]–[28], [33]. On the
other hand, hyper-specialized predictors [30] that are fine-
tuned for specific classes, such as ransomware, can fail on
other classes of malware.

Alternatively, a same-input ensemble (cell IV) consists
of multiple predictors, wherein all predictors train on the
same data. These predictors are trained either in sequence
or parallel to improve the predictive performance [13]–
[20]. While the former approach trains the predictors se-
quentially in an adaptive manner [14]–[16], [19], the latter
employs all predictors in parallel and outputs the average
of their predictions [13], [17], [18], [20]. Inherently, such
ensembles do not support training predictors with different
data pertaining to a specific class and benign behavior. The
addition of alternate data sources [21]–[23] (cell V) does
not help either, as the features from different input sources
are transformed to a single representation before feeding to
the model. Unlike prior works, SUNDEW proposes a multi-
input ensemble of predictors, wherein each classifier trains
on a different run-time data source and malware class and is
specialized to maximize the class-specific user requirement
(cell IX).

When predictors in a same-input ensemble (that are
trained in parallel) test any given unknown sample, their
independent predictions are aggregated (e.g., by averaging)
to minimize the cumulative errors of the individual pre-
dictors and form a final prediction [13], [17], [18], [20],
[22]. In contrast, aggregation in the multi-input ensemble
of SUNDEW, aims to relay the inference of the specialized
predictor corresponding to the given sample to the final
output. Challenges in such an aggregation are two-fold.
First, the individual predictors in a multi-input ensemble
deal with different noise levels in the input data from
different data sources. Second, the predictors have different
definitions of positive and negative class. We discuss how
SUNDEW addresses these aggregation challenges to relay
the optimal prediction of the specialized predictor to the
final output in Section 6. Other industrial solutions such
as [34] present class-specific behavioral analysis similar to
the goals of SUNDEW. However, based on our limited
understanding, these closed-box solutions do not support
aggregation to present a final prediction of the input sample.

Thus, the comprehensive view of malware run-time ac-

tivity, the multi-input ensemble and the aggregation mecha-
nism ensure that SUNDEW is (1) more accurate in detecting
malware (unlike [2]–[28], [33] that do not exploit C-1 and
C-3); (2) more resilient to infiltrating noise (unlike [2]–[4],
[6]–[10], [13]–[18], [20], [24]–[27] that do not exploit C-2);
(3) can support class-specific false positives (unlike [2]–[28]
that do not exploit C-4); and, (4) caters to a diverse set of
malware classes (unlike [30]).

Comparison with SIEM. The comprehensive analysis in
SUNDEW has similarities with industrial efforts such as Sys-
tem Information and Event Management (SIEM) [35] that
consider a holistic correlation of events across an enterprise
to detect threat scenarios. However, there are differences
between the two. First, SIEM collects data from diverse
sources such as antivirus software, security appliances, fire-
walls, and other organizational applications, including hu-
man interactions (such as repeated access attempt failures).
It correlates these events against pre-defined rules to detect
threats and create alerts. In contrast, SUNDEW is an alter-
native input source to SIEM that can replace the antivirus
software to provide accurate and resilient detection of mal-
ware activities. Second, the machine learning ensemble in
SUNDEW is more sophisticated than the correlation rules
predominantly used in SIEM and thus capable of detecting
zero-day threat scenarios.

Comparison with multi-input solutions in static analysis.
Few prior efforts based on static analysis have explored
malware detection using multi-input ensembles [36], [37].
These solutions employ a heterogeneous ensemble of pre-
dictors, where each classifier trains on different static fea-
tures extracted from the malware binary. However, unlike
dynamic analysis, static techniques can be easily evaded by
polymorphic and metamorphic malware that are popular
today. To the best of our knowledge, SUNDEW is the first
multi-input ensemble for dynamic analysis, considering a
comprehensive view of run-time activity to provide a case-
sensitive detection of malware.

5 THE SUNDEW FRAMEWORK

In this section, we first present a high-level overview
of SUNDEW followed by a formal description of the multi-
input ensemble.

5.1 High-Level Overview

SUNDEW is a multi-input ensemble of predictors that lever-
ages the optimal tuple of 〈data-source, features, user-
requirements〉 for accurate and resilient detection of any
malware class. Figure 5 presents a high-level overview of
the working of SUNDEW. The ensemble has a component
for each data-source, namely, network, OS, and hardware
(shown by the dashed boxes in Figure 5). During pro-
gram execution, a collection engine collects the program’s
network, OS, and hardware behavioral data and invokes
the respective components. Internally, each component has
multiple predictors, each of which is specialized for differ-
ent malware classes with class-specific features and user
requirements (refer to C-3 and C-4 in Section 3). Each
predictor is a binary classifier trained for a specific class,
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Fig. 5: Multi-input ensemble of predictors in SUNDEW. The
ensemble consists of three components corresponding to each data
source (network, OS, hardware). Internally, each component has a
specialized predictor for each class. MA() aggregates the inferences of
the specialized predictors inside each component, whereas the CA()
aggregates the inference of the three components to make the final
output of SUNDEW .

where it can infer if the program is of the malware class
of its specialization or benign. For example, a backdoor-
specialized predictor predicts if a program is a backdoor,
likewise, a PUA-specialized program predicts if a program
is a PUA.

The predictors are likely to output conflicting infer-
ences. Primarily, each specialized predictor has a different
definition of the boundary between benign and malware.
Figure 6 shows the distribution of probability estimates of
different specialized predictors in the network component
when they are tested with benign applications (green boxes),
and the class of their specialization (dark-red boxes). As
evident these distributions overlap. Thus, due to similar-
ities between deceptor and some benign applications, the
backdoor-predictor might infer a deceptor program as be-
nign while, the deceptor-predictor infers it as a deceptor.
Further, while a predictor can predict its class of special-
ization with high confidence (dark-red boxes), it predicts
other classes as malware with varying likelihood (light-red
boxes). As SUNDEW starts with no notion of the program’s
class; the challenge lies in choosing the right prediction
from the set of independent predictions. SUNDEW ad-
dresses this challenge by aggregating predictions using a
configurable model-aggregator within each component. The
model-aggregator MA() multiplexes the output of the best-
case specialized predictor to the output. For this, it leverages
predictor statistics (e.g. probability estimates) and prior
knowledge to assess the confidence of inferences inside each
component. Prior knowledge can include the capabilities of
components to reveal certain classes as observed during the
training phase. For instance, prior knowledge that hardware
trails have strong indicators of ransomware can help assess
the confidence of a ransomware-specialized predictor in
hardware. Based on the statistics and prior knowledge, MA()
computes the confidence score of each predictor and relays
the most confident inference as the output of the component.

The outputs from the three MA()s are likely to differ on
the class of the program due to two reasons. First, each
data-source varies on its capability to distinguish a specific
malware class from benign (Refer to Figure 3 and Claim
C-1 in Section 3). Second, the data-sources have varying
levels of noise from other processes running in the sys-

Fig. 6: Distribution of probability estimates of different specialized
predictors in the network component, when tested with data of benign
class (green), the corresponding specialization (red), or from any other
class (light red). Each predictor has different definitions of class bound-
aries.

tem (Refer to Claim C-2 in Section 3). For this, SUNDEW
uses a component-aggregator function CA() to aggregate
the outputs from the model-aggregators and yield the most
confident inference as the final classification output. Similar
to MA(), it exploits the components’ statistics (the output
confidence score from MA()) and its prior knowledge. Its
prior knowledge can include a broader understanding of the
distinguishing capabilities of different data sources. Further,
the CA() also checks the system load and considers the
output of a resilient data source, with the least infiltrating
noise for aggregation to the output. At both model and com-
ponent aggregators, multiple predictors/components likely
can end up with similar confidence scores. In such scenarios,
both MA() and CA() leverage the known risk-level [29] of the
classes as a tie-breaker. They choose the riskiest class as their
aggregated inference to resolve the tie. For instance, if two
conflicting inferences, backdoor and deceptor have similar
confidence scores, the aggregators choose the higher-risk
class (backdoor) of the two.

Thus, given any input test program, relaying the pre-
dictive benefits of the corresponding specialized predictor
(that employs the optimal data-source, features, and user-
requirements) to the output of SUNDEW is important to
improve accuracy and resilience. The choice and weights
of statistics and prior knowledge control this relay and the
effectiveness of the aggregation. We explore this aspect and
evaluate different designs for MA() and CA() in Section 6.

5.2 Formal Description of SUNDEW

Let B = 〈D,M,P,A〉 represent the SUNDEW ensemble
(Refer to Figure 5). D = {N, O, H} is the set of components
(i.e. data sources), namely network (N), OS (O) and hardware
(H). M = {m1, m2, . . . mn} is the set of n malware classes. P
is the set of specialized predictors, while A is the set of
aggregator functions. Algorithm 1 describes SUNDEW. It
takes as input a program z from the set of programs Z to
test. For each component k, it first gets the behavioral data
for the program (Line 5).

Behavioral data. Given a program z, its behavioral data in
component k ∈ D corresponds to a time series of snapshots
collected during the execution of the program. These snap-
shots are captured at different granularities across compo-
nents, as shown in Figure 7. At the network, we log the
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Fig. 7: Behavioral snapshots collected at different granularities
at network, OS, and hardware components.

data for every flow1 while we log every system call at the
OS. The hardware component logs the HPCs at a fixed time
interval of 100ms. The collected data is pre-processed and
converted to a matrix dz,k, with features as columns and
rows representing each snapshot (Line 5). These rows are
labeled with the class of the program, mj ∈ M,∀j ∈ [1, n].

Prediction. After getting the behavioral data, Algorithm 1
invokes all the predictors in P , each of which is specialized
to detect one of the classes in M (Line 6). P is given by,

P = {Pk,j(),∀k ∈ D,∀j ∈ [1, n]} , (1)

where predictor Pk,j is specialized in component k to classify
a program as malware mj or benign. These predictors are
trained to predict row-wise inferences along with the proba-
bility estimate of a row in dz,k being malicious. Accordingly,
the probability-estimates for dz,k is the cumulative av-
erage of probability estimates of its rows. As the predictors
are trained row-wise, the prediction of a test program might
contain some rows inferred as malware (malicious) while
others as benign. Interestingly, the percentage of malicious
rows per program, i.e. malicious-row-percentage varies
for different classes (Refer to Figure 8). Accordingly, the
specialized predictors Pk,j() are fine-tuned to these class-
specific thresholds (in Figure 8) to conclude the class of the
test program. For instance, the network-based backdoor-
specialized predictor infers a program as malware if at
least 40% of the rows are identified as malicious. Similarly,
spyware-specialized predictor infers malware if at least 30%
of the rows in the program are malicious.

Hence, for data dz,k of a program z in component k, Pk,j
outputs a tuple of its prediction rk,j and statistics sk,j as
follows:

〈rk,j, sk,j〉 = Pk,j(dz,k),∀k ∈ D,∀j ∈ [1, n] , (2)

where,

rk,j =

{
1 , for a malware of class mj
0 , for a benign program

, (3)

and, sk,j is a tuple of 〈 probability-estimates,
malicious-row-percentage〉. The statistics sk,j is an in-
dicator of confidence of the prediction of rk,j. Thus, the
output from the predictors in component k are the set
of predictions (Rk = {rk,j,∀j ∈ [1, n]}) and statistics
(Sk = {sk,j,∀j ∈ [1, n]}) (Line 7 in Algorithm 1). Each
element in these sets corresponds to a malware class.

1. All communications having the same source and destination IP
address, and source and destination port belong to a flow. Thus the
network packets are grouped into traffic flow summaries

Fig. 8: Percentage of malware rows per program varies for
different classes, across the three components (data sources).

Algorithm 1: SUNDEW
Input: z: Program to test
Result: 〈r̂B, ĉB〉: Final label and confidence.

1 begin
2 D ← {N, O, H} components
3 PriorKnowledge← Prior knowledge on predictors

in P
/* Aggregating predictions at model-level

*/
4 for k ∈ D do
5 dz,k ← Behavioral data of z in component k
6 Pk ← Specialized predictors in k
7 〈Rk, Sk〉 ← Pk(dz,k) . Get predictions
8 Expertk ← Expert set of predictors in k .

(derived from PriorKnowledge)
9 〈r̂k, ĉk〉 ← MA (Rk, Sk, Expertk)

10 . Highly confident prediction in Rk

/* Aggregating predictions at components
Level */

11 R̂← {r̂k, ∀ k ∈ D} . Prediction of each component
12 Ĉ← {ĉk, ∀ k ∈ D} . Confidence of each component
13 Ê←

{Prior-known strength of component k to predict r̂k}
. Derived from PriorKnowledge

14 L← Number of processes in the host machine .
System load

15 〈r̂B, ĉB〉 ← CA (R̂, Ĉ, Ê, L)
16 . Highly confident prediction among components
17 return 〈r̂B, ĉB〉

Aggregation. The independent predictions in Rk are likely
to conflict, as shown in Table 2A, which shows an example
output of the specialized predictors in the network compo-
nent when tested with a backdoor sample. While four pre-
dictors (e.g., the ones specialized for banker and backdoor)
detect the sample as malware, others predict it as benign.
The conflicts arise as each predictor has different estimates
for maliciousness (Sk), including probability-estimates (Fig-
ure 6) or the number of malicious rows in a program
(Figure 8). Similarly, the components may differ in their
prediction (Refer to Table 2B), primarily due to the varying
noise levels that affect the probability-estimates. While the
network component flags the sample as malware, OS and
hardware component predicts it as benign. For an unbiased
aggregation, while leveraging the benefit of the optimal
predictor in each component, SUNDEW adopts a two-level
aggregation as shown in Figure 5. Thus, A = {MA(), CA()}
is a set of aggregator functions that compare the confidence
of each predictor to resolve conflicts inside each component
and among the components. In either case, the statistic Sk
is not sufficient, as aggregating based on the maximum or
average of Sk may not relay the optimal prediction (gray
cells) to the output (red cells) in most cases (Refer to Table 2).
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TABLE 2: (A) Conflicts among specialized predictors when
tested with a backdoor sample in the network component.
While four specialized predictors (e.g., banker, backdoor) detect
the sample, four others predict it as benign. Naive aggregation
schemes based on Sk (probability) may not be optimal to relay
the output of the backdoor-specialized predictor (gray cell)
to the output (red cells). Similarly, (B) illustrates the conflict
among different components about the sample. While the
network component detects it as malware, OS and hardware
components flag it as benign.
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Prob-1 0.47 0.38 0.33 0.73 0.33 0.34 0.19 0.49 - 0.73 0.41
Prob-0 0.53 0.62 0.67 0.27 0.67 0.66 0.81 0.51 - 0.81 0.59

Prediction 1 1 0 1 0 0 0 1 ? 0 0

(B) Output from each component∗ Aggregation
Network OS Hardware Majority? Maximum Average

Prob-1 0.73 0.58 0.20 - 0.73 0.50
Prob-0 0.27 0.42 0.80 - 0.80 0.49

Prediction 1 0 0 0 0 0
* Assuming each component outputs its best prediction.
Prediction of 1 indicates malware class, and 0 indicates benign class. Accordingly,
Prob-1 indicates the probability of the sample being malware. Prob-0 indicates
the probability of the sample being benign.

Prior knowledge. To validate the confidence put forward by
Sk, SUNDEW also leverages the knowledge built using past
experience or domain insights. Thus, PriorKnowledge(Pk,j)
is a comparative measure of prior-known efficiency of pre-
dictor Pk,j to detect malware mj in component k, ∀k ∈ D,
∀j ∈ [1, n]. An example of such a measure is the F1-
Score of Pk,j() observed in the train-validate phase or past
deployments of SUNDEW. Based on this measure, some
predictors are experts (more confident than others) in a
component. For instance, backdoors’ operations are known
to be network-intensive from domain insights. Thus, if the
backdoor-predictor in the network component predicts a
program as a backdoor, its prediction is likely to be the
most accurate. Accordingly, the expert set Expertk of a
component k (Line 8 in Algorithm 1) is the set of predictors
having high prior-known strengths in k, given by,

Expertk = {mj, | PriorKnowledge(Pk,j) > η, mj ∈ M} ,
(4)

for a domain-specific configurable threshold η.

Model-level Aggregation. To deduce the most confident
prediction from the output of all predictors inside a com-
ponent k (i.e., Rk = {rk,j,∀j ∈ [1, n]}, per Equations 2
and 3), SUNDEW invokes the function MA() with inputs:
the predictions (Rk), statistics (Sk = {sk,j,∀j ∈ [1, n]}), and
expert set (Expertk) of predictors in k (Line 9). Internally,
MA() uses Sk and Expertk to evaluate the confidence of each
prediction in Rk, and return r̂k and ĉk, the most confident
prediction of the component and its confidence measure
(Line 9).

Component-level aggregation. At the components level,
SUNDEW has three independent predictions R̂ from each
MA() in Line 9, wherein R̂ = {r̂k, ∀ k ∈ D} (Line 11). Sim-
ilarly, SUNDEW has their corresponding confidence values
Ĉ = {ĉk, ∀ k ∈ D} (Line 12). As the predictions in R̂ are
likely to differ, SUNDEW again leverages the prior known

strengths of the specialized predictor for the predicted mal-
ware class r̂k ∈ R̂ in component k, given by,

Ê = { PriorKnowledge(Pk,r̂k) ∀k ∈ D} . (5)

These scores are indicative of the confidence of a component
k in predicting r̂k. As noise induced by system load could
affect detection, SUNDEW also considers the system load,
L. For example, L can be the number of processes executing
at the host machine (Line 14). Finally, SUNDEW invokes
the component-aggregator CA() to aggregate the three pre-
dictions. The function CA() takes as input the predictions
(R̂), confidences (Ĉ), and prior-known strengths (Ê), and the
system load (L). Similar to MA(), it evaluates the confidence
of each component, and outputs the highly confident pre-
diction (r̂B) and its confidence (ĉB), as the final output of
SUNDEW (Line 15). In the next section, we discuss how
SUNDEW builds insights from predictor statistics and prior-
known strengths for case-sensitive detection of malware.

6 INSIGHTFUL AGGREGATION OF PREDICTIONS

The functionalities of the model and component aggregators
are different. A model aggregator (MA()) resolves conflicts
among predictors that use the same data source to test
a sample, but have different definitions of the boundary
between positive and negative classes. In contrast, a com-
ponent aggregator (CA()) resolves conflicts between predic-
tors that use different data sources (having varying levels
of noise) for the same sample. While the predictions can
be aggregated in different ways, the optimal aggregation
mechanism for different malware classes and components
varies due to the differences in the boundary definitions
and the noise levels. For instance, naive comparisons such
as majority [18], [22] or averaging of statistics [13], [20]) may
not lead to the optimal aggregation for all malware classes.
Thus, SUNDEW leverages a configurable MA() and CA()
that explore different mechanisms on test-time predictor
statistics, prior-known strengths, and system load to relay
the optimal prediction as the final output, as discussed next.

6.1 Model-Aggregator

Algorithm 2 describes the model-aggregator MA() function.
For a given component k, it takes as input the predictions
(Rk), corresponding statistics (Sk), and expert set of predic-
tors Expertk. As each predictor has different definitions
of malware-benign boundary (Figure 6), MA() aggregates
predictions in a two-step process, by achieving consensus
first on the maliciousness of the program and then on the
specific class of the malware.

Binary consensus on maliciousness. Firstly, MA() as-
sesses the predictions and statistics to vote if the
test program is malware or benign using a function
ConsensusIfMalware()(Line 2 of Algorithm 2). Multiple al-
ternatives are possible for realizing ConsensusIfMalware(),
including consensus based on logical-OR, majority-vote,
confidence, or learning. Naive mechanisms infer malware
if at-least one of the predictions (logical-OR), or most predic-
tions are malware (majority-vote). However, such approaches
can significantly increase the false positives.
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Algorithm 2: Model-Aggregator (for component k)
Input: Rk = {rk,j, Predictions from Pk,j∀j ∈ [1, n]},

Sk = {sk,j, Statistics from Pk,j∀j ∈ [1, n]},
Expertk: Expert set of component k.

Result: 〈r̂, ĉ〉: Final vote and confidence.
1 begin

// Check if predictions in R indicate
malware

2 (label, probmalware)←
ConsensusIfMalware(Rk, Sk)

3 if label is malware then
// Identify the set of most confident

predictor(s) from R | rk,j is 1.
4 C Set← GetConfidentSet (Rk, Sk, Expertk)
5 r̂← Malware class of the most risky in C Set
6 ĉ← Probability estimate of r̂

7 else
8 〈r̂, ĉ〉 ← 〈benign , 1− probmalware)〉
9 return 〈r̂, ĉ〉

A most-confident ConsensusIfMalware() infers malware
if the aggregated confidence of malware predictions is
higher than benign predictions. It aggregates confidences
using the mean-probability-difference, which is the mean dif-
ference between the probability-estimates of malware (Prob-
1 in Table 2) and benign class (Prob-0) of all predictors.
It infers malware when mean-probability-difference > 0,
and benign otherwise. Another potential metric to aggre-
gate confidences is mean-maliciousness-difference, which is
the mean difference between the percentage of malicious
and benign rows inferred for a program by all predictors.
However, we find that mean-maliciousness-difference is
sub-optimal for ConsensusIfMalware() as the percentage
of malicious rows varies for each class (See Figure 8).

Alternatively, a learning-based ConsensusIfMalware()
uses trained models to infer malware. Two configurations
are possible for such models. A booster learns to minimize
the loss function of the specialized predictors. On the other
hand, a multiplexer learns to multiplex the output of the
specialized predictor to the final output of SUNDEW. Both
these configurations train their models with the predictor
outputs (Refer to Equation 2) observed for all programs z ∈
Ztrain, which is the set of programs in the training phase.
Thus, these models train on Xk = [{Pk,j(dz,k),∀j ∈ M,∀z ∈
Ztrain] to predict target labels Yk = [yz,k|yz,k ∈ M,∀z ∈
Ztrain]. The target label yz,k for a program z is different for
booster and multiplexer. As the booster minimizes the loss
function of the component, its yz,k is the actual-class c ∈ M
of the program z. On the other hand, the multiplexer aims
to relay the best-case prediction of z to the output. Thus, its
yz,k is the predicted class of z when tested on the predictor
specialized for class c in component k.

Table 3 enlists the aggregation-loss of MA(), which is the
difference between the F1-Score of ConsensusIfMalware()
as compared to the baseline, i.e., the F1-Score achieved by
a specialized predictor that is optimum for the program.
An aggregation-loss of zero indicates that MA() is able to
relay the inference of the optimum specialized predictor
to the output of SUNDEW. On the other hand, negative
loss indicates that MA() can boost the detection performance

TABLE 3: Aggregation-loss with different alternatives for MA()
and CA(). The comparison baseline is the F1-Score of the specialized
predictor that is optimum for the program. An aggregation-loss of zero
indicates that the MA() and CA() can relay the prediction of the optimum
specialized predictor to the final output for any program. A negative
loss indicates that the aggregation is able to improve the detection
performance beyond that of the specialized predictor.

Network OS Hardware
Baseline 0% 0% 0%

Logical-OR 41.92% 80.05% 80.05%
Majority-vote 33.66% 6.81% 68.82%

Most-Confident 59.04% 7.12% 7.12%
Multiplexer 5.18% 4.64% 4.64%
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Fig. 9: Probability distribution of different specialized predictors in the
OS and hardware component, when tested with data from the benign
class (green), their corresponding specialization (red), or any other class
(light red). The distributions overlap significantly in OS as compared
to that in the network (Figure 6) and hardware, making confidence
(probability-estimate), a poor metric to aggregate class in MA().

beyond that of the specialized predictor by minimizing its
loss function. Naive voting mechanisms such as logical-OR
or majority-vote have high aggregation-losses. While the
logical-OR function leads to high false positives, majority-
vote fails when less than half of the predictors can detect
the malware sample. Similarly, the performance of the most-
confident ConsensusIfMalware() can be sub-optimal as the
range of probability estimates that differentiates malware
and benign are different for each specialized predictor (refer
to Figure 6). In contrast, the learning-based mechanisms can
learn these class-specific probability estimates effectively to
reduce aggregation losses. Specifically, the booster improves
the performance of both OS and hardware components by
at least 1% while reducing the aggregation-loss to as low as
4.76% in the network component.

Multi-class consensus. After consensus on the malicious-
ness of the program, the probability estimates (Sk) of in-
dividual predictors could help identify the most confident
predictor, and hence the class. However, these estimates get
unreliable when a specialized predictor attempts to predict
on data of any other class (light-red boxes in Figure 6).
The figure plots these estimates of different specialized
predictors in the network component. Figure 9 plots the
corresponding distributions in the OS and hardware com-
ponent when tested with data of benign class (green), the
corresponding specialization (red), or from any other class
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Fig. 10: Detection F1-Score observed for different classes for
different alternatives for MA() at network, OS, and hardware.
The baseline for comparison is the F1-Score achieved with the
specialized predictor optimum for each class.

(light red). The overlapping distributions especially in the
OS and hardware component makes identifying the mal-
ware objective class non-trivial. Alternatively, some predic-
tors have a confidence-window, wherein the aforementioned
distributions (distance between their inter-quartile range)
are far apart (e.g., spyware in network component in Fig-
ure 6). If the test-time statistics of a predictor fall in such
confidence windows, the predictor can be considered highly
confident. As evident, confidence windows are beneficial in
the network (Figure 6) or hardware component (Figure 9),
whereas in OS, they can get unreliable. An alternative is to
employ prior-knowledge and prioritize predictions of the
expert-set alone (refer Equation 4).

Accordingly, if the test program is a malware, MA()
evaluates the confidences of all predictions rk,j ∈ Rk which
predicted malware (i.e. rk,j = 1 in Equations 2 and 3). For
this, it employs a configurable function GetConfidentSet()
that evaluates the statistics (Sk) and expert set (Expertk)
to return a confident set of predictor(s), C Set (Line 4 of
Algorithm 2). To compute such a set, GetConfidentSet()
can use one of the following metrics: (1) confidence, that
returns the predictor with high probability-estimates; (2)
prior-knowledge, that prioritizes expert predictors in Expertk
to choose predictors with high probability-estimates; or (3)
confidence-window, that returns the predictors whose statis-
tics fall within their respective confidence window. These
options can return a set of confident predictors. To resolve
the contention in C Set in such cases, MA() prioritizes the
classes in accordance to the risk categories [29] and outputs
the most risky class in C Set as the prediction of the
component (Line 6).

Figure 10 evaluates the F1-Score of MA() when
tested with any program, for different alternatives of
GetConfidentSet(), against the baseline F1-Score achieved
with the corresponding specialized-predictor that is opti-
mum for the program. The detection is inferred as correct if
the risk level of the predicted class is the same or higher than
that of the program. MA() can restrict the aggregation-losses
to as low as 4% at the component outputs to aggregate the
class for any program (Refer to Multi-class row in Table 3).
While the confidence metric is the most effective for the net-
work component, prior-knowledge and confidence-window
metrics are effective for the OS and hardware, respectively.

Algorithm 3: Component-Aggregator

Input: R̂ = {r̂N, r̂O, r̂H}:Predictions from MA()for all k ∈
D, Ĉ =
{ĉN, ĉO, ĉH}:Confidences from MA() for all k ∈ D,
Ê: Prior-knowledge, L: System Load (Number of
processes in the system).

Result: 〈r̂B, ĉB〉: Final label and confidence.
1 begin
2 if L < τ then

// At low system loads, all components
are reliable.

3 C Set← Compute confident set(R̂, Ĉ, Ê)
4 r̂B ← Class of the most risky among C Set
5 ĉB ←

Confidence of the most risky among C Set

6 else
// At higher system loads, OS is the

most reliable.
7 〈r̂, ĉ〉 ← 〈r̂O, ĉO〉
8 return 〈r̂B, ĉB〉

6.2 Component Aggregator

The CA() is responsible for choosing the most confident
prediction in R̂ = {r̂k, ∀ k ∈ D}, where r̂k is the output
prediction aggregated by the MA() in each component k
(Line 9 of Algorithm 2). CA() can weigh components based
on the empirical confidence of their prediction observed at
test-time (Ĉ = {ĉk, ∀ k ∈ D} (Line 9 of Algorithm 2)), or
their prior-known strengths (Ê, Equation 5) in predicting
R̂. Alternatively, it can weigh components based on their
resilience to noise and system load. At higher loads, the
OS component is the most stable and noise-free, as OS logs
are collected specifically to the process PID. In contrast, the
network and hardware can get noisier with an increase in
the number of processes.

Accordingly, CA() (presented in Algorithm 3) takes as in-
put the predictions from each component (R̂), corresponding
confidences (Ĉ), prior-knowledge (Ê), and the system load
(L) which is the number of processes in the system. At lower
system loads (Line 2), it computes a confident set C Set
using multiple options such as : (1) most-confident selects
the prediction which has high ĉ; (2) prior-known selects the
prediction which has high prior-knowledge scores; or, (3)
majority selects the prediction that is common between at
least two components (Line 3). Similar to MA(), CA() resolves
contentions in C Set by choosing the most risky class in
C Set as the final aggregated prediction (Lines 4 and 5). On
the other hand, at higher system loads, the OS component
is the most stable, and hence CA() outputs predictions of the
OS component directly (Line 7).

Figure 11 evaluates the F1-Score obtained for different
alternatives of CA() against the performance of the compo-
nent that is optimum for each class. Given any program,
we consider the prediction to be correct if the risk of the
predicted class is the same or higher than that of the
program class. Exploiting prior-knowledge, CA() is able to
detect any malware boosting the performance beyond that
of its best-case specialized predictor by at least 1.42%, and
detect the objective class of the program with a loss as low
as 7.86% (Refer to the row CA() in Table 3).
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Fig. 11: Detection F1-Scores for different classes using differ-
ent confident computing functions in CA(). Employing prior-
knowledge gives the best F1-Score for most malware classes.

7 IMPLEMENTATION AND EVALUATION
In this section, we discuss the real-world behavioral data
used to build the ensemble, followed by the implementation
and evaluation of SUNDEW.

7.1 Real-World Behavioral Dataset
For unbiased cross-dimensional analyses, SUNDEW re-
quires access to a simultaneous capture of network, OS,
and hardware run-time trails of a large corpus of malware
samples of different classes. SUNDEW relies on the RaDaR
dataset [38] that provides such a comprehensive view of the
real-world activity across the system stack of diverse Win-
dows malware families labeled with their attack objective.
RaDaR is collected by executing live malware samples (2017
ongoing) on a real-world testbed [39] with Internet connec-
tivity, in a timely manner, when their remote command-and-
control servers are highly likely to be active. Each sample is
executed for 2 minutes in an automated manner, which is
known to be sufficient to elicit malicious activities of most
malware samples [40]. For a fair comparison, the benign
samples are executed in an automated manner similar to
malware, as user interactions are easily distinguishable,
unlike the stealthy malware activities.

The dataset [38] provides a comprehensive set of popular
features extracted based on prior works [2], [15], [16], [20],
[28], [41], [42], from 7 million network packets, 11.3 million
OS system call traces, and 3.3 million hardware events
collected for 10, 434 samples. These features include 58
features at network, 11 at OS, and 54 micro-architectural
events at the hardware [38]. Each row in the data repre-
sents a snapshot of network flow2, system call in OS, and
periodic HPC measurement in 100ms intervals in hardware.
Table 4 summarizes the number of snapshots corresponding
to each malware class from the three data-sources. With
data of 10,434 samples evenly spread across 30 well-known
malware families belonging to 8 different classes (attack
objectives) and benign applications, RaDaR [38] provides a
diverse representation of malware classes for evaluations.

Train-validate-test partitions. Finally, we split the dataset in
a 70:15:15 ratio into the train, validate and test sets. Specifi-
cally, we ensure that the train set does not contain samples,
whose data is collected at a later point of time than a sample
in validate/test sets to prevent experimental biases [43]. To
ensure unbiased learning, the train set contains an even
distribution of benign and malware classes.

2. All communications having the same source and destination IP
address, and source and destination port belong to a flow. Thus the
network packets are grouped into traffic flow summaries

TABLE 4: Summary of behavioral snapshots of different mal-
ware classes from the three data-sources in RaDaR [38]. Snap-
shots indicate the number of flows in the network, system call
traces in OS, and periodic HPC logs in the hardware.
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Fig. 12: The F1-Score observed with SUNDEW Binary and SUN-
DEW Multi, in comparison with the specialized predictors fine-tuned
for each class in each component. SUNDEW Binary infers if a program
is malware/benign, whereas SUNDEW Multi infers the class of the
program. SUNDEW Binary achieves an F1-Score of 1 for most classes
as compared to their best-case specialized predictors in network, OS, or
hardware.

7.2 SUNDEW Implementation
We implement the specialized predictors in Python v3.6.2
using XGBoost3 v1.4.2 library. We train each specialized
predictor with the train-validate set containing data of the
specific malware class and benign programs. Next, we test
every specialized predictor with the train-validate sets of
all other malware classes to generate conflicting predic-
tions. The resultant predictions and statistics form the train-
validate sets for the aggregators. We implement the aggre-
gators using Python LightGBM library v3.3.14. Finally, we
evaluate the performance of SUNDEW using the test set of
malware samples.

7.3 Evaluation
We compare the performance and resilience of SUNDEW
against the best-case specialized predictors of all malware
classes, as well as the state-of-the-art malware classifiers.
Finally, we evaluate the overheads incurred by SUNDEW.

Specialized predictors. Figure 12 compares the perfor-
mance of SUNDEW to detect a malware class against
the corresponding predictor specialized for that class (and
hence the optimum) in different components (data sources).
We consider two configurations: SUNDEW Binary mea-
sures the F1-Score of detecting if a test sample is mal-
ware/benign, whereas SUNDEW Multi measures the F1-
Score of inferring the class of the sample. As evident,
SUNDEW Binary, with its holistic view of malware activ-
ity from the three data sources, an ensemble of special-
ized predictors, and aggregation, can achieve performance
similar to the corresponding specialized predictor for any
malware class. The aggregation in SUNDEW Binary boosts

3. https://xgboost.readthedocs.io/en/stable/python/
4. https://lightgbm.readthedocs.io/en/latest/
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(a) F1-Scores of detection models based on network and
OS under various load conditions for their best detectable
classes. The OS-based models are resilient to infiltrating
noise from increasing system load.

(b) F1-Scores of detection models based on network, OS, or
hardware and that of SUNDEW under varying load conditions
for Cryptominer class. SUNDEW is able to leverage the best of
the three components for detection accuracy while benefiting
from the resilience of the OS component.

Fig. 13: Impact of system load on detection efficacy.

the average detection performance beyond that of the best-
case specialized predictors in any of the three components,
by 1.14%. SUNDEW Binary has an F1-Score of 1 for most
malware classes and an average score of 0.93 for any mal-
ware class. While gaining performance in high-risk mal-
ware, the performance of low-risk malware slightly drops
due to aggregation. On the other hand, aggregating the
correct objective class of the sample in SUNDEW Multi
incurs an aggregation loss of 7.86%. This is because the
evaluation considers a detection successful only if the en-
semble predicts the actual class or a riskier class for the
test sample. Hence, though PUA is successfully detected,
its measure in SUNDEW Multi drops as the riskier class
Deceptor is chosen when resolving conflicting predictions
during aggregation.

Resilience to noise. We next evaluate SUNDEW under
varying noise infiltration induced by system load. We use
the number of processes in the system to measure noise. To
generate data for the experiment, we run benign applica-
tions from CNET [44] in multiples of 10 in the background
while running the malware programs and collect the corre-
sponding data at network, OS, and hardware. While these
benign applications represent use-case scenarios, an exten-
sive characterization covering a wide range of system loads
is planned for future work. Figure 13a plots the F1-Score
of specialized predictors in network and OS under varying
system load conditions. As evident, the performance of the
network component decrease, while the OS component is
agnostic to system load.

We next compare the resilience of SUNDEW using the
case of cryptominer, which is best detected in hardware.
Figure 13b plots the F1-Score of the cryptominer-specialized
predictors based on network, OS, and hardware and SUN-
DEW on cryptominer data collected under varying system
load conditions. As evident, the performance of hardware-
based predictor though higher than OS and network at

TABLE 5: Comparison of SUNDEW with prior state-of-the-art solu-
tions including single classifiers [2], [20], [42] and single-input ensem-
bles [23] based on (A) F1-Score, and (B) False-positive rate, of detection
observed on the RaDaR dataset.

Detection Performance
(F1-Score) (B)False-Positive Rate

Detection
model

Single
Classifier SI

E∗

SU
N

D
EW

Single
classifier SI

E∗

SU
N

D
EW

Component
⇒

Class ⇓

N
[2

]

O
[4

2]

H
[2

0]

N
+

O
[2

3]

N
+O

+H

N
[2

]

O
[4

2]

H
[2

0]

N
+O

[2
3]

N
+O

+H

Cryptominer 0.80 0.87 0.93 0.87 0.82 0.2 0.01 0.14 0.11 0.013
Banker 0.85 0.83 0.76 0.83 1 0.15 0.49 0.23 0.16

Spyware 0.89 0.87 0.81 0.86 1 0.12 0.35 0.13 0.15 0
Backdoor 0.82 0.83 0.79 0.70 1 0.11 0.32 0.13 0.28 0

Ransomware 0.78 0.64 0.75 0.73 1 0.25 0.04 0.27 0.35 0
PUA 0.83 0.72 0.74 0.81 0.99 0.12 0.35 0.28 0.2 0.003

Downloader 0.96 0.88 0.84 0.91 0.89 0.04 0.21 0.11 0.07 0.055
Deceptor 0.87 0.88 0.78 0.86 0.78 0.13 0.51 0.24 0.15 0.051

Mean 0.85 0.82 0.8 0.82 0.935 0.15 0.31 0.19 0.19 0.015
*SIE- Same Input Ensembles, N - Network, O - OS, H - Hardware

lower system loads, decreases significantly as load increases.
In contrast, the OS-based predictor, agnostic to system
load, outperforms both the network and hardware-based
predictors as soon as more than 10 additional user ap-
plications start executing simultaneously. Hence, the OS-
based predictor is the most resilient to noise. In contrast,
SUNDEW leverages the best of three worlds to achieve
accurate and resilient malware detection (claims C-1 and C-
2 in Section 3). At lower system loads, SUNDEW prioritizes
network and hardware components for higher accuracy,
whereas, at higher system loads, it uses the reliable OS
component for prediction.

Comparison with prior art. Table 5 compares SUNDEW
against our implementation of prior state-of-the-art pre-
dictors including single classifiers that rely on a sin-
gle data source (network [2], operating system [42], or
hardware [20]); and, same-input ensembles that do not
employ class-wise specialization [23]. We compare these
works based on the detection F1-Score and false-positive
rate observed on the RaDaR dataset (Table 4). The cross-
dimensional view of malware activity, specialization, and
insightful aggregation of predictions in SUNDEW improve
the detection F1-Score by at least 10% as compared to
these prior works (Table 5A). Similarly, the class-specific
specialization in SUNDEW decreases the false-positive by
at-least 89% as compared to the prior works (Table 5B).
Finally, with the incorporation of different data sources, we
observe that SUNDEW is as resilient as the state-of-the-art
OS-based works, even under noisy conditions.

Overheads. We next evaluate the overheads of SUNDEW
considering an example deployment in an enterprise net-
work. To measure the overheads, we first present the design
and workflow of SUNDEW in the deployment in Figure 14.
SUNDEW runs as a service on a middle-box server in the
enterprise network, whereas the host machines run the
client agents that enable the hosts to access the service to
test any program. While the client agents collect the OS
and hardware trails of the program under test, the gateway
in the network collects the network behavior. Figure 14b
illustrates the workflow of SUNDEW when a host accesses
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Fig. 14: (a) An example deployment in an enterprise network. The
network data is collected at the gateway, whereas the OS and hardware
data are collected at the host machines. The middlebox server runs the
SUNDEW framework. (b) The workflow of SUNDEW. .

its service. At the host machine, whenever a new program
executes, the client agent reports the hash of the program to
the server (Step 1 in Figure 14b). To avoid repeated testing of
the same program, SUNDEW maintains a detection history
of program hashes at the server. Thus, if the program is
not analyzed previously, SUNDEW starts the capture of
respective logs at the host, as well as the gateway for 2
minutes (Step 2). After the duration, the server collects the
OS and hardware data from the host, and the network
data from the gateway (Step 3). The server then extracts
the features from each data source, invokes the respective
components of SUNDEW to predict the class of the program,
and informs the final prediction to the host (Step 4). Finally,
the client agent at the host takes the necessary action based
on the prediction.

We use GeekBench [45] tool and observe that end-hosts
incur an average overhead of 1.5% at the first execution of
a test program. Note that the end-hosts (client-agents) are
responsible only for the collection of OS and hardware data,
whereas the heavy-weight operations of feature extraction
and specialized predictors run on the middle-box server
(refer to Figure 14a). While the middle-box server would
require a dedicated provision of resources, the impact on
users is minimal (1.5%) and is restricted to the execution of
new applications alone.

8 DISCUSSION

In this section, we first discuss the applications of SUNDEW.
Next, we discuss its limitations and present plausible direc-
tions for future work.
Applications. The multi-featured approach and aggregation
in SUNDEW can serve as an analysis framework for anti-virus
companies and defense solutions for securing enterprises. As
an analysis framework, the holistic view and specialization
enable precise characterization of samples, thus reducing
the manual efforts to label thousands of newer samples
reported daily. Alternatively, SUNDEW can serve as defense
solutions in enterprise networks to provide accurate and
resilient detection of malware attacks.
Incremental update of predictors. The SUNDEW ensem-
ble involves predictors specialized for a set of malware
classes. Further, aggregator functions are customized based
on statistics from these predictors. With malware behavior
evolving, the specialized predictors and aggregators would
require updates. While mechanisms for incremental updates
need to be explored in the future, we propose an auto-
configuration engine that auto-configures the SUNDEW en-

semble for any update or any deployment setting. Such
an engine takes as inputs the labeled data from the three
data sources and the user requirements per malware class.
It outputs the ensemble, including its specialized predictors
and aggregator functions.

Scalability. With a rampant increase in newly reported mal-
ware classes, the number of specialized predictors is bound
to increase 3x (one for each data source), increasing the
complexity of aggregator functions and overheads. Hence,
specialized predictors for each class can get infeasible. A
viable solution is to club models that share common features
and user requirements in the 3-tuple to reduce the number
of specialized predictors for each data source. We intend
to build an automated framework to configure SUNDEW
with an optimal number of specialized predictors in future
work. Alternatively, Locality Sensitive Hashing (LSH) can
assist in identifying the similarity of test programs to pre-
viously tested program hashes. Accordingly, LSH can assist
in enabling only the relevant specialized predictor or data
components to decrease overheads.

Extensive Characterization of Noise. We analyze the impact
of noise on SUNDEW using well-known benign applica-
tions. However, an extensive characterization of varying
system load conditions and impact on the three data sources
is planned for future work.

9 CONCLUSION
In this paper, we emphasize that malware classes are in-
herently different, and catering to the differences can im-
prove the efficiency and resilience of detection. We propose
SUNDEW, a novel multi-input ensemble of predictors and
aggregator functions that leverages a multi-dimensional
view of malware execution, considering its activities at the
network, OS, and hardware and the system noise to provide
a case-sensitive prediction. Our evaluations of SUNDEW
on a real-world dataset indicate that the multi-dimensional
view and specialization enable SUNDEW to avert infiltrat-
ing noise into the behavioral data while improving the
accuracy, resilience, and false-positive guarantees. To the
best of our knowledge, SUNDEW is the first to provide
a multi-dimensional case-sensitive characterization of mal-
ware. The holistic approach and aggregation strategies open
new avenues for malware research and detection models.
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