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ABSTRACT
Artificial Intelligence techniques on malware run-time behavior
have emerged as a promising tool in the arms race against sophisti-
cated and stealthy cyber-attacks. While data of malware run-time
features are critical for research and benchmark comparisons, un-
fortunately, there is a dearth of real-world datasets due to multiple
challenges to their collection. The evasive nature of malware, its
dependence on connected real-world conditions to execute, and its
potential repercussions pose significant challenges for executing
malware in laboratory settings. Consequently, prior open datasets
rely on isolated virtual sandboxes to run malware, resulting in data
that is not representative of malware behavior in the wild.

This paper presents RaDaR, an open real-world dataset for run-
time behavioral analysis of Windows malware. RaDaR is collected
by executing malware on a real-world testbed with Internet connec-
tivity and in a timely manner, thus providing a close-to-real-world
representation of malware behavior. To enable an unbiased com-
parison of different solutions and foster multiple verticals in mal-
ware research, RaDaR provides a multi-perspective data collection
and labeling of malware activity. The multi-perspective collection
provides a comprehensive view of malware activity across the net-
work, operating system (OS), and hardware. On the other hand, the
multi-perspective labeling provides four independent perspectives
to analyze the same malware, including its methodology, objective,
capabilities, and the information it exfiltrates. To date, RaDaR in-
cludes 7 million network packets, 11.3 million OS system call traces,
and 3.3 million hardware events of 10, 434 malware samples having
different methodologies (3 classes) and objectives (9 classes), spread
across 30 well-known malware families.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; • Com-
puting methodologies→Machine learning.
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1 INTRODUCTION
Cyber-attacks worldwide have increased at an alarming scale, af-
fecting at least 60% of enterprises worldwide in 2021 [7]. The conse-
quences of these attacks vary from data loss to reputation damage,
business disruption, financial loss, extortion, and even sabotage
of critical infrastructures. The instrumental tool that enables ad-
versaries to execute such a wide range of offensive maneuvers is
malware. Despite the decades-long research in malware detection,
the increasing number of attacks and their sophistication indicates
that the problem is far from solved.

Over the last two decades, there have been several attempts
to use Artificial Intelligence (AI) for malware detection that rely
on datasets of malware samples [3, 15, 17, 18, 20, 24, 35, 42, 44,
47, 48, 51]. However, most published works typically use private
datasets. Each dataset captures different malware features such as
static strings in the malware binaries or dynamic run-time behavior,
including network communications, system calls invoked at the
operating system (OS), or hardware events. Furthermore, the size
of the datasets across different papers vary from as low as 500
samples [2, 9, 23] to 1.1 million malware samples [1, 41, 44, 47].
Given the diversity in the datasets, it is not easy to make a fair
comparison across the different detection approaches.

A few organizations, such as Endgame [1] and Microsoft [41]
have attempted to address the issue mentioned above by creating
large-scale open malware datasets containing static features from
malware binaries. These datasets facilitate static analysis that infers
maliciousness using signatures extracted from themalware binaries,
for example, strings in the binaries. These datasets have inherently
become standard benchmarks to compare different detection tech-
niques. However, detection techniques based on static analysis are
easily evaded by packing and obfuscating the binaries as is becom-
ing popular in polymorphic and metamorphic malware [36, 37].
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Dynamic analysis that executes malware and analyzes their run-
time behavior has recently gained traction over static analysis due
to its ability to counter packing and obfuscation [37]. Such dynamic
analyses, powered with AI, are increasingly adopted for their ability
to detect zero-day1 malware. Primarily, AI enables the modeling
of benign behavior and the identification of anomalies to facilitate
the detection of such malware. Unfortunately, to date, there are
no real-world datasets to compare different dynamic analysis tech-
niques. This is primarily due to multiple orthogonal challenges in
executing malware to create such a dataset.
C-1. Malware execution typically requires real-world environ-

ments, failing which it can choose not to execute, remaining
stealthy. Specifically, modernmalware looks for triggers typi-
cally present in virtualized environments to detect and evade
analysis.

C-2. Malware execution heavily depends on its communications
to remote servers, known as command-and-control (C&C)
servers, that guide and instruct the malware on its subse-
quent actions. This requires an active Internet connection
when the malware is executed.

C-3. In many cases, the C&C servers associated with a malware
sample are short-lived. They are pulled down within a few
months after the malware is first reported [29], rendering
later executions of the malware futile.

C-4. While it is important to execute malware in connected envi-
ronments, it can be catastrophic if the malicious impact is
not contained.

Hence, executing malware in real-world and connected environ-
ments in a timely manner (before its short-lived C&C servers are
unavailable), is essential to capture a precise representation of mal-
ware behavior, while ensuring the containment. Multiple prior
works have attempted to build datasets of run-time behavior of mal-
ware [3, 15, 17, 18, 20, 24, 35, 42, 44, 47, 48, 51]. However, they are
either not precise due to the use of virtualized and non-connected
environments [17, 18, 20, 24, 35, 44, 47, 51], or are not open to the
research community [3, 15, 18, 20, 42, 48, 51].

This paper presents RaDaR, an open and growing real-world
dataset for run-time behavioral analysis of Windows malware.
RaDaR dataset is precise as it is collected by executing malware
samples in a timely manner (C-3), on a real-world testbed (C-1)
with Internet connectivity (C-2), while containing their malicious
impact (C-4). To ensure a real-world environment, the testbed em-
ploys a network of physical machines connected to the Internet to
execute malware. For timely execution, RaDaR uses an automated
framework that periodically downloads the latest samples from
online repositories [49] and executes them on the testbed to collect
the run-time trails. Thus, the framework ensures that RaDaR is
regularly updated with newer malware samples. Finally, the frame-
work uses a dedicated Internet connection and a two-level firewall,
which allows the malware to operate while containing its spread.

RaDaR can foster different verticals in malware research with
a multi-perspective data collection and labeling of malware be-
havior. A multi-perspective collection, with simultaneous capture
of network, OS, and hardware behavior, enables a fair comparison
of different solutions based on these trails. Such a comparison is
1A new malware that is never reported before.
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Figure 1: Independent perspectives of analyzing malware in RaDaR
and their class boundaries. Each surface is a grid of 10,000 points,
where each point represents amalware sample, and its color indicates
its class based on the perspective. For instance, the common corpus
of 10,000 samples belongs to 20 malware families. However, they can
be grouped into 9 classes based on their attack objective or 3 classes
based on their methodology. These classes overlap. For instance, two
malware samples, A and B of the same family, have different attack
objectives and methodologies.

infeasible today as the set of malware samples that these solutions
use in their respective datasets are not consistent. Further, such
a collection has the potential to enable multi-featured analyses,
as malware classes differ in their functionality, leaving varying
run-time trails at network, OS, and hardware.

Another critical aspect not addressed in prior works is themulti-
perspective labeling of malware. The same malware can be labeled
differently based on attributes such as its attack objective, method-
ology used to infect the victim, capabilities, the information they
exfiltrate, or their family (i.e., code lineage). For instance, spyware
and ransomware have different objectives but may share the same
methodology for infection. Further, some malware may have few
capabilities in addition to their main objective, such as stealthily
logging user keystrokes. Hence, it is beneficial to analyze these mal-
ware attributes independently to draw clear class boundaries. Unlike
prior works [15, 17, 20, 24, 35, 44, 48, 51], which propose a single
perspective to label malware (e.g., family), we propose four inde-
pendent perspectives, namely objective, methodology, additional
capabilities, and the information exfiltrated by themalware. Figure 1
illustrates the class distribution and boundaries of 10,000 malware
samples based on these perspectives. While the samples fall into
20 classes based on their family, they can be grouped into 9 classes
based on their objective2. As the class boundaries for the same set
of samples vary widely based on the perspective, independent anal-
ysis of these perspectives is beneficial for effective detection. Such
multi-perspective labeling enables designing specialized solutions

2The classes based on objective include benign applications, ransomware, spyware,
backdoor, banker, cryptominer, deceptor, downloaders, and PUAs.
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and novel countermeasures, thus facilitating multiple verticals in
malware research.

Following are the major contributions of this paper:
(1) RaDaR presents an open3 dataset of real-world behavior of

malware samples from 2016 till date collected in a timely
manner, with mechanisms for regular updates, providing
multiple perspectives of malware behavior.

(2) RaDaR provides simultaneous capture of run-time malware
behavior observable at network, OS, and hardware enabling
multi-dimensional analysis and fair comparison of different
solutions.

(3) We propose four independent perspectives to label malware,
including its methodology, objectives, capabilities, and the
type of information it exfiltrates.

(4) To date, RaDaR contains 2.7 terabytes of data with 7 million
network packets, 11.3 million OS system call traces, and 3.3
million hardware events of 10, 434 malware samples having
different methodologies (3 classes), objectives (9 classes), and
spread across 30 well-known malware families.

Following is the organization of the rest of the paper. Section 2
provides the necessary background for the paper. Section 3 presents
the data collection framework. Section 4 discusses the multiple
perspectives of malware behavior that RaDaR provides. Section 5
presents the RaDaR dataset and its class distributions. Section 6
presents our evaluations on the dataset. Section 7 presents the
related work. Finally, Section 8 concludes the paper.

2 BACKGROUND
Malware is a program with malicious intent, which can vary widely
in objective from popping up annoying advertisements (adware),
downloading malicious applications (downloader), exfiltrating sen-
sitive data (spyware), stealing financial credentials (banker), mining
crypto-currencies (cryptominer), opening a stealthy access path-
way for the attacker (backdoor), to sabotaging the entire system
(ransomware). They can adopt different methodologies to enter the
victim, such as being bundled with other legitimate software, spam
emails that trick the users into downloading malicious files from
infected removable drives, or by exploiting vulnerabilities.

For identification and analysis, security researchers use different
taxonomies to label each malware sample. Malware is traditionally
known based on its type as listed in Table 1 [38]. These names are
based on their unique propagation methodologies (for e.g., trojan,
virus) or their attack objective (for e.g., ransomware). Alternatively,
they are known by their family, which is a collection of malware
produced from the same code base and authors, and may have simi-
lar filename references, language, or C&C infrastructures. Typically,
Anti-Virus (AV) companies also include in the label, a string that
indicates the platform (Windows, Linux, etc.), type (Table 1), and
family[16]. For instance, Win64.Trojan.NukeSped.A_ sample is a
64-bit Windows executable trojan belonging to NukeSped family.
Malware Analysis. Malware analysis is typically done in two
ways. Static analysis examines malware binaries statically with-
out executing them to extract signatures and imply its malicious-
ness. However, such static signatures can be easily thwarted by

3https://openmalwareresearch.com

Table 1: Malware taxonomy based on its type or common-name [15,
17, 20, 37, 38, 48]

Class Description

Trojan A type of malware that downloads onto a computer
disguised as a legitimate program.

Virus
A program that can copy itself and infect a computer

without the knowledge of the user via infected
removable drives.

Worm
A type of malware that typically exploits vulnerabilities
to spread by making copies of itself from computer to

compute.r

Bot
A self-propagating malware capable of infecting a large
number of hosts and taking complete control over a

computer.

Spyware A type of malware that infiltrates the victim and keeps
gleaning sensitive information for an extended period.

Adware A type of malware that pops-up annoying
advertisements and inappropriate content.

Downloader A type of malware that downloads other malware on
the victim.

Ransomware A type of malware that can sabotage user files and
extort a ransom from the user for restoration.

Cryptominer A type of malware that exploit the computing resources
of thevictim to mine cryptocurrencies.

Backdoor
A type of malware that bypasses access control and

grants an alternate covert pathway to resources at the
victim.

techniques that change the malware binary without affecting its
functionality or run-time behavior. For instance, packing used in
the popular polymorphic malware encrypts the contents of the
binary, whereas obfuscation modifies the binary to create different
copies of the same malware [36]. In contrast, dynamic analysis
executes the malware and analyzes the run-time trails observable
on the system stack. Consequently, it can counter the packing and
obfuscation techniques that typically foil static analysis. Further, its
potential to facilitate non-signature-based approaches that compare
the run-time behavior of malware and benign applications makes
it capable of detecting even zero-day malware.

Malware run-time behavioral trails are typically collected at net-
work [3], OS [18], or hardware [42]. The network data capture all
malware communications, including that to its C&C, whereas OS
data captures its attempt to remain stealthy, achieve persistence,
and execute its objective. More recently, researchers have explored
the potential of micro-architectural events (e.g., number of cache
misses) to detect malware [42]. These hardware events are measur-
able using hardware performance counters (HPC) [19] available in
most modernmicroprocessors. Researchers rely on these behavioral
trails to analyze and detect malware.
Evasion. While dynamic analysis is more powerful than static
analysis against packing and obfuscation, modern malware have
evolved to identify and evade even dynamic analysis environments.
Specifically, they look for artifacts (such as the presence of a virtual
machine) to identify analysis environments and choose to remain
dormant. To this end, the precise collection of malware behavior
requires executing malware in real-world environments.

https://openmalwareresearch.com
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Figure 2: Automated real-world framework [22] for data collection
in RaDaR.

3 DATA COLLECTION FRAMEWORK
The trails captured by executing a malware sample are precise if
they closely represent its real-world behavior. This section presents
the framework used for collecting the RaDaR dataset and describes
how it addresses the challenges C-1 to C-4 to ensure the precision
of the collected trails.

Figure 2 describes the data collection framework [22], which has
three engines, namely the update, test, and label engines. The up-
date engine downloads the malware samples for analysis, whereas
the test engine executes them on a real-world testbed to collect
their run-time trails. Finally, the label-engine labels the collected
trails based on different perspectives. Next, we discuss how the
framework addresses the challenges in precisely collecting mal-
ware behavior.
Real-World Testbed (C-1). To prevent malware from evading
analysis, the environment should be close to that of the real-world,
which includes non-virtualized physical systems, preferably a het-
erogeneous network of devices, and Internet connectivity. The test
engine employs a real-world testbed designed in our laboratory
with a network of 512 different physical machines to execute mal-
ware. These machines include Windows and Linux desktops and
single-board computers (Raspberry Pi and Intel Galileo boards).
This heterogeneity of devices ensures that the testbed is likely to
have sufficient real-world conditions that malware looks for similar
to that in the wild.

Further, the execution of each sample can affect the system state,
such as files, registry, and the micro-architecture. Since these mod-
ifications made by prior samples can affect subsequent analysis,
we start every execution in a clean initial state of the system. To
achieve this, the testbed has a quick state-reset mechanism that
resets the machines to initial states before executing every sample.
Internet Connectivity (C-2) and Containment (C-4). To pro-
vide connectivity while containing the malware impact, we use
a dedicated Internet connection (ERNET [10]) for the framework
that is isolated from our university network. Further, the testbed
connects to the Internet via a two-level firewall that is lenient on in-
coming communications while extensively scrutinizing all outgoing
communications for malicious behaviors such as Denial-of-Service
attempts, network scans, and spam emails. On detecting such mali-
cious outgoing communications, the firewall blocks them. Thus, the
testbed allows malware communications with their remote C&C
servers while preventing the malicious impact from permeating
outside the testbed.
Automated Timely Execution of Malware (C-3). The frame-
work in Figure 2 is automated to collect behavioral data of malware
in a timely manner when their short-lived C&C servers are likely

Benign Malware

Figure 3: T-SNE visualization [52] that indicates the distinguishabil-
ity of backdoor, spyware, and ransomware run-time trails from that
of benign applications at network, OS, and hardware. We capture
these trails by executing 1000 samples of each class on the real-world
testbed. The trails are pre-processed to extract 40 features from the
network (e.g., number of flows), 9 features fromOS (e.g., write to file),
and 56 features from the hardware (e.g., L1 cache misses) trails. The
axes values are 2D- projections of these multi-dimensional features.

to be active. The update engine periodically crawls public malware
repositories for newly reported samples and downloads them to the
malware corpus. The addition of new samples to the corpus triggers
the test engine, which executes the latest samples from the corpus
on the real-world testbed. The testbed collects the behavioral trails,
which are later labeled and added to the RaDaR dataset. Thus the
framework ensures a regular feed of newmalware samples reported
in the wild, which are analyzed immediately and updated to the
RaDaR dataset.

4 MULTI-PERSPECTIVE ANALYSIS
RaDaR presents multiple perspectives of malware execution, in-
cluding data collection observed at network, OS, and hardware, and
different ways of labeling them. While multi-perspective collection
provides a comprehensive view of malware activity in the system,
multi-perspective labeling provides different perspectives to ana-
lyze the same malware. This section discusses the need for different
perspectives to collect and label malware behavior.

4.1 Multi-Perspective Collection
Malware classes differ in objectives and functionalities and can leave
varying trails in the network, OS, and hardware. Figure 3 presents
a t-SNE visualization [52] of behavioral features that is indicative
of the distinguishability of backdoor, spyware, and ransomware
trails from that of benign applications. As seen in the figure, some
malware classes are more easily identifiable using one trail than
the others. For instance, backdoor functionality involves consistent
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Figure 4: Overlapping malware attributes: (a) Methodology and
Objective: The horizontal blue shaded bars (trojan, worm, and virus)
differ in the methodology, while the vertical bars (e.g., spyware,
backdoor, and downloader) differ in the attack objective; (b) Family
and Objective: The green circles indicate families of different sizes.
The rectangular boxes indicate families having the same objective.

communications to its remote adversary to create a covert access
pathway, leaving strong indicators in the network. Hence, back-
door behavior is most distinguishable from benign in the network
compared to the OS and hardware. On the other hand, spyware
functionality, which involves reading files and gleaning sensitive in-
formation, is most distinguishable in the OS and network compared
to the hardware. Likewise, ransomware is most distinguishable in
the hardware as it triggers distinct micro-architectural events when
it encrypts a large number of victim’s files.

Prior works have extensively explored run-time trails for mal-
ware detection, typically using one of the network, OS, or hardware
trails [3, 5, 15, 17, 18, 20, 24, 35, 44, 48, 51]. Each of these works
presents highly acceptable results using the respective trails. How-
ever, a comparison of this large body of research to evaluate the
capabilities of different trails is infeasible today, as every work
uses execution trails of different samples collected in different time-
frames and environments. A fair comparison of these solutions
requires a comprehensive view of malware run-time activity in the
system. While few datasets present a combination of network and
OS trails [17, 20, 35, 44], we argue that the hardware perspective is
also needed to build a comprehensive view of malware behavior,
especially for classes like ransomware. Further, the differences in
capabilities of run-time trails provide opportunities to explore more
sophisticated ensemble-based approaches.

To facilitate multiple run-time perspectives, the testbed in Fig-
ure 2 simultaneously captures the network, OS, and hardware trails
during malware execution. We use tshark [34] and Windows Pro-
cess Monitor [33] to capture network and OS trails, respectively. On
the other hand, we develop a customized Windows driver based on
existing works to measure Hardware Performance Counters [13].
The network logs are collected at the gateway connecting the
testbed to the Internet since all the network traffic is routed through
it. The traffic can be attributed to different machines in the testbed
based on the IP address. On the other hand, OS and hardware be-
havior are collected locally at the machine executing the malware,
and are attributed to the malware based on its process identifier.

4.2 Multi-Perspective Labeling
Contemporary malware research typically labels malware based
on type, family, or AV-labels (Refer Section 2) [15, 18, 20, 24, 35, 44,
45, 47, 48]. However, malware samples are diverse with multiple

attributes, making it favorable to label malware with different per-
spectives. Further, some of these attributes may overlap, warranting
an independent evaluation of each perspective.
Malware diversity and attributes. A malware sample can be
characterized by a tuple of its attributes as ⟨methodology, objective,
capabilities, family, information it exfiltrates⟩, each of which can
vary widely as discussed next.

(1) Methodology.Malware can adopt different methodologies
to infect the victim and propagate to other systems. Ac-
cordingly, they can be a virus, trojan, or worm. A virus is
a malicious piece of code that attaches to a host program
to get executed. It is transmitted from one computer to an-
other through the host program. On the other hand, trojans
and worms are standalone programs. While trojans require
user interactions for activation and propagation, worms can
self-activate and self-replicate via the network.

(2) Objective.Malware can have different attack objectives based
on which it can be adware, downloader, spyware, banker,
cryptominer, backdoor, botnet, or ransomware (Refer Sec-
tion 2). Accordingly, they pose varying levels of risk to users.
For instance, ransomware that sabotages the system is a
high-risk malware, whereas adware that merely pops up
user-annoying advertisements is a low-risk malware.

(3) Capabilities. Apart from the main objective, we observe that
some malware may also have other capabilities. Some mal-
ware have key-logging capability to log user inputs, while
others may have a hidden backdoor that opens an alternate
access pathway for the attacker, in addition to their primary
objective.

(4) Information Exfiltrated. We observe that every malware ei-
ther steals or destroys some information of the target. The
exfiltrated information typically includes one or more of
the following | (i) System details (e.g., version of OS and
system settings to identify analysis environments for eva-
sion); (ii) User credentials; (iii) Keystrokes; (iv) Application
passwords; (v) Details of email accounts; (vi) Clipboard and
screenshots; (vii) Digital certificates; (viii) File-system con-
tents; (ix) Process and hardware details; (x) Network-related
details, including active ports and other systems in the net-
work; (xi) Online activities of the user; and (xii) location
and language.

Overlapping Attributes.While malware samples have different
tuples characterizing them, they share some commonalities due
to overlapping attributes. For instance, spyware that exfiltrates
data could be implemented using any methodology (trojan, worm,
or virus). Figure 4a illustrates this overlap with a distribution of
malware samples based on their methodology (blue shaded horizon-
tal bars) and objective (vertical bars). The horizontal and vertical
bars are individually disjoint, but together, they overlap and can
significantly affect the accuracy of classification.

Similarly, Figure 4b illustrates the overlap between attributes of
family (green circles) and objective (rectangular boxes). As evident,
many families can share the same attack objective. For instance,
Corebot [39], Delf [12], and Formbook [31] are all backdoor fami-
lies. Further, a family may have malware samples of different ob-
jectives (i.e., circles overlapping two or more boxes). For instance,
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Table 2: Features observed at network, operating system and hardware.

Category and Features

N
et
w
or
k

[3
,1

4,
40

]

Connection-based (Destination IP and Port; Protocol; Total number of flows, packets per flow; Number of inbound and
outbound packets; Average and standard deviation duration; Ratio of sizes of packets from originator and responder; Ratio of
established states.);
TLS-based (Ratio of TLS and non-TLS connection records; Ratio of TLS and SSL version in connection record; SNI and
destination IP comparison; Ratio of self-signed certificates; Ratio of SSL records having SNI; Ratio of self-signed certificates;
Average of certificate paths)
Certificate-based (Average length of certificate keys; average and standard deviation of certificate validity; Validity of
certificate period; number of certificates; number of domains in certificate; Ratio of certificate records and SSL records; the
presence of Server Name Indication in subject alternative name )
HTTP-based (URL path length; Number of URL query parameters; Filename length; Inter-arrival time; Number of URL flows;
Number of downloaded and uploaded bytes; Number of files; Ratio of digits, Alphabets, Special characters, Upper/lower case,
and Vowels in filename, URL, and Hostname respectively.)

O
S

[4
,6

,8
]

Registry (Read, Query or Write to Windows Registry); File (Read a file, Create/Write to a file, Lock/Unlock a file); Security
(Retrieve/change security descriptors of files, Add new CLSID2, Modify existing CLSID); Process related (Process Start,
Process Exit, Load an image, Thread create, Thread exit); Path-indicator (Encoding of the path of the resource accessed, Prior
knowledge of association of the filename, or directory path with malware); Network (TCP Send/Receive, UDP Send/Receive,
Length of data); Parameters and return values (Length of data read/write,Desired Access rights for the requested resource,
Shared Read, Write or Delete, Encoding of the options including Open Reparse Point, Synchronous I/O Alert etc, return values)

H
ar
dw

ar
e

[4
2]

Hardware Performance Counters (HPCs) (54 HPCs such as: Core clock cycles; Instructions retired; Instruction length
decoder stalls micro-operations from loop stream detector, decoders, and micro-operation cache; resource stalls; Branches
taken; Mispredicted branches; Register moves eliminated; Register moves elimination unsuccessful; L1-data cache misses;
L1-data cache replacements Instruction-TLB miss, L2 requests, DTLB store/load misses leading to a walk; Hardware interrupts
received; Instruction cache misses); Memory load LLC hits/misses.)

Bladabindi is a family of samples that can be a backdoor or spy-
ware [32]. Figure 1 shows the significant variations between classes
based on these attributes of a corpus of 10, 000 malware samples.
Thus, it is beneficial to analyze different malware attributes inde-
pendently to draw clear class boundaries for effective classification.

Labeling inRaDaR.To facilitate multi-perspective analysis,RaDaR
labels malware with four different independent attributes in addi-
tion to its family, namely, methodology, objective, two capabilities
including keylogger and backdoor, and the information it exfiltrates.
Each of these attributes presents different perspectives of malware
and can aid in designing specialized solutions such as mechanisms
to prevent malware infection (based on methodology) or attack
mitigation (based on objective). Specifically, an objective-based per-
spective can enable multi-dimensional models to improve detection
accuracy (refer Section 4.1) and customized responses based on user
tolerance to false positives. For example, users would prefer the
termination of high-risk malware (such as ransomware) as soon
as possible to minimize the attack impact. On the other hand, they
would not want the termination of low-risk classes like adware
unless the detection is highly precise in order to minimize the false
positives. Likewise, a capability-based perspective can help design
specialized keylogger or backdoor detectors, whereas an informa-
tion leak-based perspective can help implement appropriate data
protection mechanisms.

In contrast, the single perspective of type, family or AV-labels in
prior works [15, 18, 20, 24, 35, 44, 45, 47, 48], limits the scope of anal-
yses possible on such datasets. Further, both type and family-based
perspectives can result in fuzzy class boundaries, thus affecting

the classification accuracy. Specifically, type-based perspective (Re-
fer Table 1) mixes the attributes of methodology and objective
(Figure 4a). On the other hand, different families can have similar
functionalities and behavioral trails, while others may have dis-
tinctly behaving malware samples in the same family (Figure 4b).
Such a characteristic of family-based perspective can be attributed
to its definition, which is more indicative of code lineage and static
features than run-time behavior. In contrast, AV-based labels often
include specific meta-data in addition to type and family names,
making them too specific for any generalization [43].

5 RADAR DATASET
The RaDaR dataset to date contains the behavior of 10,434 malware
samples from 2016 obtained from Anti-Virus companies [21] and
public malware repositories [50] using the automated framework
discussed in Section 3. In this section, we first describe the snap-
shots and features in the RaDaR dataset. We next present the class
distributions of different perspectives in RaDaR .

Raw Behavioral Snapshots. As described in Section 2, the logs
capture the time-series behavior of malware execution observable
at network, OS, and hardware. Network logs contain the network
packets from the machine executing the malware. In contrast, the
OS logs capture all the system call traces of the malware, including
its file, registry, process, and other operations. On the other hand,
the hardware logs contain the values of hardware performance
counters at a periodic interval of 100 ms. To date, RaDaR has 2.7
tera-bytes of data, including 7 million network packets, 11.3 million
OS system call traces, and 3.3 million hardware events.
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Features. RaDaR extracts a comprehensive set of features about
malware execution as listed in Table 2. For the network data, we use
the Zeek [54] tool to pre-process the packet-level logs into network
flow summaries. A network flow comprises of all communications
that share the same source and destination IP addresses and ports.
In total RaDaR has 60K network flow summaries and 58 features.
We use custom scripts to parse the OS and hardware logs. In this
way, we extract 11 features for OS and 54 features for hardware.
The data is converted to a matrix, where the rows are the behavioral
snapshots and columns are the feature values. Thus, RaDaR has
3 matrices of order 60K × 58 for network, 11.3M × 11 for OS, and
3.3M × 54 for hardware, and each row in these matrices are labeled
as per the perspectives.

Class Distributions. Table 3 shows the distribution of malware
based on different perspectives in the RaDaR dataset. Most malware
samples in the dataset belong to the trojan class (71%), which is sim-
ilar to the distribution of malware in the real-world [46]. Similarly,
RaDaR contains representative classes having different objectives,
including banker, downloader, Potentially Unwanted Applications
(PUA), deceptor, spyware, backdoor, ransomware, and cryptomin-
ers. While 20.3% of malware samples in RaDaR can log keystrokes
of the users in addition to their primary objective, 19.1% of them
have backdoor capabilities. A graphical representation of this distri-
bution and the significant overlaps between malware classes across
perspectives is shown in Figure 1.

Table 3 also provides the number of behavioral snapshots present
for each class per perspective across network, OS, and hardware in
RaDaR. As evident, the distribution of network, OS, and hardware
snapshots may not match that of malware in the dataset, as each
malware differs in its activity across the three system components.

Table 4 lists the distributions of malware families in the dataset.
RaDaR contains 30 families that can be grouped into 9 classes based
on the objective of the malware. Table 5 shows the distribution
of samples based on the information the malware collects and
steals from the target. Most malware (> 51%) collect the system
information to help it identify virtualized analysis environments.
While 19% of malware log keystrokes, 6% and 3% of samples capture
the screenshots and clipboard.

6 RESULTS
In this section, we present the results of our evaluation of RaDaR.
These results on well-known models provide a baseline for future
experiments. For our experiments, we apply Principal Component
Analysis (PCA) to reduce the feature space to 10 network features,
10 OS features, and 20 features from the hardware. For each per-
spective, we split the dataset in 70:15:15 ratio corresponding to
train, validate and test sets, with an even distribution of classes.

Methodology. To evaluate the detection of methodology, we train
standard multi-class machine learning (ML) models including Deci-
sion Tree [25], k-Nearest Neighbours [27], Logistic regression [26],
Random-Forest [28], XGBoost [53], and LightGBM [30]. For XG-
Boost and LightGBM, we consider both the one-versus-one (OvO)
and one-versus-rest (OvR) configurations for multi-class classifica-
tion [30, 53]. Table 6 presents the best F1-Score observed for detect-
ing methodology using network, OS, or hardware trails. Methodol-
ogy of a malware is best detected using OS and hardware features

Table 3: Class distributions of different perspectives in RaDaR

Perspective Class %age Number of Snapshots
Network OS Hardware

Methodology Trojan 71.5% 36K 7.7M 2.4M
Worm 18.6% 14K 2.6M 413K
Benign 9.9% 8694 1.9M 578K

Objective

Cryptominer 4.7% 992 293K 158K
Banker 13.4% 4878 772K 51K
Spyware 15.3% 11588 1.9M 59K
Backdoor 12.9% 7845 1.5M 371K

Ransomware 7.2% 2239 807K 182K
PUA 10.3% 7152 2M 914K

Downloader 18.5% 9277 1.7M 502K
Deceptor 5.4% 4617 440K 478K
Benign 9.9% 8964 1.9M 578K

Capabilities

Keylogger 20.3% 8618 1.8M 108K

Non-
Keylogger 69.7% 39K 8.1M 2.6M

Benign 9.9% 8694 1.9M 578K
Backdoor 19.1% 15.1K 3M 412K
Non-

Backdoor 71% 33.4K 7.1M 2.3M

Benign 9.9% 8694 1.9M 578K

Table 4: Families in RaDaR
Objective Family

Class Count Class (#Count)

Downloader 1991 Agent (1898), Chindo (69), Small (16),
XeyoRAT(6), crossza(2)

Banker 1442 Emotet (1442)
PUA 1106 pua (1106)

Ransomware 770 Gandcrab(350), cyclone (305), Ryuk (40),
Rapid (29), Ouroboros (26), Sigma (20)

Spyware 1639 Bladabindi(946),Agent (350), Vools (252),
Buhtrap (77), Kryptik (14)

Backdoor 1388 Corebot (320), Formbook (250), Agent (441),
Delf (377)

Deceptor 585 Deceptor(585)
Cryptominer 500 Coinminer(500)
Dropper 260 Agent (226), NukeSped (33), Delf (1)

Table 5: Distribution of information exfiltrated in RaDaR

Information % Information % Information %
System 51.31 Accounts 2.45 Location 3.71
User 20.04 Keystrokes 19.83 Language 3.69
Network 7.00 Screenshots 6.29 Online trails 0.13
Filesystem 8.80 Passwords 3.17 Certificates 0.85
Hardware 10.67 Clipboard 3.19 Unknown 21.45
Process 2.40

as compared to network. Intuitively, methodology deals with how
malware infects a system and activates itself, and hence, OS and
hardware trails have stronger indicators than the network trails.
While Random-Forest offers the best F1-Score for detection at net-
work and OS, LightGBM gives the best F1-Score at hardware.
Objective.We also observe that the detection F1-Score of objective
using multi-class classifiers [25–28, 30, 53] was very low, which
presents a wide scope for model improvements. In this regard, we
next evaluate how different each objective class is from benign ap-
plications. To this end, we train specialized XGBoost binary models
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Table 6: Results of the evaluations on RaDaR

Perspective Class Best F1-Score Best Model
Network OS Hardware Network OS Hardware

Methodology Benign 0.998 1 1 RF RF LGBM
Trojan 0.856 0.999 0.988 RF RF LGBM
Worm 0.866 0.999 0.988 RF RF LGBM

Objective

Cryptominer 0.83 0.87 0.94
Banker 0.9 0.82 0.67

XGB-Binary LGBM-Binary XGB-Binary

Spyware 0.89 0.92 0.7
Backdoor 0.92 0.8 0.75

Ransomware 0.86 0.7 0.93
PUA 0.88 0.68 0.56

Downloader 0.99 0.84 0.68
Deceptor 0.99 0.87 0.66

Capabilities
Benign 0.98 0.999 0.999

XGB-OVR XGB-OVR XGB-OVRNon-Keylogger 0.892 0.994 0.999
Keylogger 0.875 0.999 0.999
Benign 0.998 0.999 0.8

LGBM-OVR RF XGB-OVRNon-Backdoor 0.930 0.998 0.98
Backdoor 0.935 0.998 0.96

Family (e.g. Backdoor)
Corebot [39] 0.340 0.050 0.870

XGB-OVR RF XGB-OVRDelf [12] 0.390 0.153 0.982
Agent [11] 0.682 0.151 0.458

Formbook [31] 0.496 0.316 0.401
RF: Random Forest XGB: XGBoost LGBM: LightGBM XGB-Binary/LGBM-Binary: Binary Models comparing benign and an objective class
OvR: One-versus-Rest OvO: One-versus-One

on each objective class and benign applications. Table 6 presents
the results. Each malware class differs in the trails that best dif-
ferentiate it from benign applications, as highlighted in the table.
While the network trails are effective for most classes, OS trails are
the best to detect spyware. Similarly, hardware trails are the most
effective for detecting cryptominers and ransomware. We leave the
exploration of complex models and ensemble-based approaches
that can exploit these differences in run-time trails for future work.
Capabilities. We next evaluate detection of keylogging capabil-
ity using standard multi-class models [25–28, 30, 53] on network,
OS and hardware trails. The perspective has three classes namely,
benign, non-keylogger, and keylogger. Interestingly, we find the
keylogging capability is best detected using hardware and OS fea-
tures, as shown in Table 6. Its detection F1-Score is the lowest in the
network, as keylogging primarily involves intercepting the system
calls to log the user keystrokes and does not involve any network
activity.

Similar evaluation of backdoor capability using multi-class mod-
els [25–28, 30, 53] indicate that it is best detected with OS features,
as compared to network and hardware (Table 6). This capability
perspective has three classes, namely, benign, non-backdoor, and
backdoor. The results are in contrast to the objective-based eval-
uation, wherein OS trails had lower detection F1-Score than net-
work. We believe the models trained with the capability perspective
are able to learn the traits of backdoor functionality better than
objective-based classes, which can have overlapping capabilities.
Family. Finally, we evaluate the relevance of family taxonomy for
malware detection based on run-time behavior. As there are a large

number of malware families (Table 4), we consider the example of
backdoor families. Table 6 presents the results of detection F1-Score
using standard multi-class classifiers on 4 backdoor families using
the network, OS, and hardware trails. The results are sub-optimal.
In essence, family is an indicator of code lineage and attribution and
hence mainly useful for static analysis. In contrast, run-time behav-
ior depends on malware functionalities, which is the same for all
families of a particular class of malware and can affect classification.

7 RELATEDWORK
Multiple prior works have proposed datasets of run-time behavior
of Windows malware [3, 5, 15, 17, 18, 20, 24, 35, 42, 44, 47, 48,
51]. Table 7 compares them based on the environment they use to
execute the malware and the perspectives of data collection and
labeling that they present.

Analysis Environments. Most works rely on virtual machines
that are easily evaded by modern malware, and hence, are not
representative of real-world behavior [17, 18, 20, 24, 35, 44, 47, 51].
On the other hand, the datasets generated in a timely manner under
real-world conditions are not open [3, 15, 42, 48], or are least two
decades old (2001) [5]. Such outdated datasets may not be relevant
in the current malware landscape, as modern malware have evolved
considerably. In contrast, the real-world testbed framework (refer
Section 3) ensures a precise representation of malware behavior
in the wild while providing mechanisms to continually augment
RaDaR with the latest malware samples (refer Section 5).
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Table 7: Comparison of prior works based on analysis environments and perspectives of data collection and labeling.

Dataset Real
World
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CAIDA [5] ✓ 2001 2001 ✓ - - ✓Ψ ✓ - ✓Ψ - - - - - ✓

[15] ✓ * 2010 - ✓ - ✗ ✓ - - - - - - - *

ISOT [35] ✗ * 2004-05,
2010, 2017 ✓ ✓ - ✓Ψ ✓ - - ✓Ψ ✓ - - - ✓

CTU [24] ✗ * 2011 ✓ - - ✗ ✓ ✓ - - ✓ - - - ✓

[48] ✓ 2011 2011 ✓ - - ✗ ✓ - - - - - - - *
[20] ✗ 2012-2013 2013 ✓ ✓ - ✗ ✓ ✓ - - - - - - *

ADFA [17] * 2013 ✓ ✓ - ✗ ✓ - - - - - - - ✓

UCI [47] ✗ 2010-2014 2010-2014 - ✓ - ✗ ✓ ✓ - - - - - - ✓

[18] ✗ * 2015 - ✓ - - ✓ - - - ✓ - - - *
[3] ✓ 2015 2015 ✓ - - - ✓ - - - - - - - *

MalRec [44] ✗ 2014-2016 2014-2016 ✓ ✓ - - ✓ - - - ✓ - - - ✓

[42] ✓ * 2018 - - ✓ - ✓ - - - - - - - *
[51] ✗ * 2020 - ✓ - - ✓ - - - ✓ - - - *

RaDaR ✓ 2016-2022$ 2019-2022$ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

# ✗ in Independent Attributes indicates the type taxonomy that mixes different attributes. Ψ Presents only one or two classes.
- Not Present * No information available or Not Open
$ Growing dataset till date.

Data Collection. Most datasets lack a simultaneous capture of
different trails of malware behavior, including hardware. They ei-
ther present a single trail [3, 5, 15, 17, 18, 20, 24, 35, 42, 44, 48, 51],
or a combination of network and OS trails [17, 20, 35, 44]. In con-
trast, the comprehensive view of malware activity across the sys-
tem stack facilitates a fair comparison of different solutions and
a multi-dimensional analysis of malware behavior as discussed in
Sections 4.1 and 6.
Perspectives in Labeling. Prior datasets use the perspective of
binary, type, family or AV-based strings to label malware [3, 5, 15,
17, 18, 20, 24, 35, 42, 44, 45, 47, 48, 51]. Binary datasets that clas-
sify samples into benign and malware are too restricted for any
multi-dimensional analysis such as assessing risk, capabilities or
forensics [3, 5, 15, 18, 20, 24, 35, 42, 44, 45, 48, 51]. On the other hand,
the datasets based on type [15, 20, 47, 48] and family [18, 24, 35, 44]
present only a single multi-class perspective, and can have fuzzy
class boundaries due to overlapping attributes. While few open
datasets present independent perspectives of objective or methodol-
ogy of malware, they are limited to one or two classes (Ransomware
and Botnet [35], Red Worm [5]), thus limiting the scope of analyses
using such datasets. Finally, the AV-based perspective [43, 45] is too
specific for any generalization, thus affecting the classification. In
contrast, we present a dataset with four independent perspectives
in addition to family: methodology, objective, additional capabilities
including keylogging and backdoor, and the information it exfil-
trates (Section 4.2). To the best of our knowledge, RaDaR is the first

open dataset to capture precise malware behavior using real-world
systems with diverse perspectives of its run-time activities.

8 CONCLUSION
This paper presents RaDaR, an open real-world dataset for malware
behavioral analysis, with mechanisms to keep pace with the evolv-
ing malware landscape. RaDaR has multiple use cases for AI-based
security research, including an unbiased comparison of detection
approaches and the development of novel countermeasures incor-
porating multiple perspectives of malware execution. While the
challenges in executing malware have resulted in datasets being
largely private or restricted to the security researchers, we firmly
believe that the open RaDaR dataset enables other communities,
especially the data science researchers, to explore and analyze it.
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