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ABSTRACT
An in-depth analysis of the impact of malware across multiple lay-
ers of cyber-connected systems is crucial for confronting evolving
cyber-attacks. Gleaning such insights requires executing malware
samples in analysis frameworks and observing their run-time char-
acteristics. However, the evasive nature of malware, its dependence
on real-world conditions, Internet connectivity, and short-lived
remote servers to reveal its behavior, and the catastrophic conse-
quences of its execution, pose significant challenges in collecting
its real-world run-time behavior in analysis environments.

In this context, we propose JUGAAD, a malware behavior-as-a-
service to meet the demands for the safe execution of malware. Such
a service enables the users to submit malware hashes or programs
and retrieve their precise and comprehensive real-world run-time
characteristics. Unlike prior services that analyze malware and
present verdicts on maliciousness and analysis reports, JUGAAD
provides raw run-time characteristics to foster unbounded research
while alleviating the unpredictable risks involved in executing them.
JUGAAD facilitates such a service with a back-end that executes a
regular supply of malware samples on a real-world testbed to feed
a growing data-corpus that is used to serve the users. With hetero-
geneous compute and Internet connectivity, the testbed ensures
real-world conditions for malware to operate while containing its
ramifications. The simultaneous capture of multiple execution arti-
facts across the system stack, including network, operating system,
and hardware, presents a comprehensive view of malware activ-
ity to foster multi-dimensional research. Finally, the automated
mechanisms in JUGAAD ensure that the data-corpus is continually
growing and is up to date with the changing malware landscape.
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• Security and privacy→Malware and its mitigation.
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1 INTRODUCTION
Malware attacks are increasing at an alarming scale. The ramifica-
tions of these attacks vary widely, ranging from data breaches to
business disruptions, reputation damage, financial loss, and even
sabotage of critical infrastructures. With millions of malware vari-
ants reported every year, malware is continually evolving in po-
tential and sophistication, posing significant challenges to security
researchers. Confrontation of such an ever-evolving threat land-
scape requires an in-depth understanding of malware behavior
in the wild, including their objectives, functionalities, and conse-
quences. In fact, behavioral analysis of malware has recently gained
traction in the arms race against malware due to its potential to
detect zero-day malware.

Researchers glean insights into malware behavior from the run-
time trails observed by executing malware samples on analysis
frameworks. This demands access to a large corpus of recently re-
ported livemalware samples. The aspect of being live is important in
the malware context, as its execution heavily depends on its commu-
nications to live remote servers called command-and-control (C&C)
servers. These servers are short-lived and are typically pulled down
in a few months after the malware is first reported, warranting a
timely execution of the sample to elicit its real-world behavior.

Currently, malware research adopts two approaches, supported
mainly by private enterprises, to address the demand for live sam-
ples. Given a hash of a sample to be tested, the first approach
provides the outcome of analysis done by the Anti-virus (AV) en-
gines housed by these enterprises [55]. The outcome includes the
inference of the maliciousness of the sample, signatures, and re-
ports from the analyses. However, these signatures and reports are
limited by the capabilities of the available AV engines, whereas
fostering unbounded research requires access to the raw behavioral
data of these samples. The second approach supplies live malware
samples to researchers for execution and subsequent analyses [39].
Such a model has multiple limitations. First, the distribution of live
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Figure 1: JUGAAD Framework for Malware Behavior-as-a-Service

samples is highly vulnerable to accidental execution and can be
catastrophic if stringent access policies and processes do not govern
the handling of these samples. Any leakage of samples can lead
to potential misuse, warranting policies for ensuring accountabil-
ity. Second, due to the potential risk and liabilities involved, such
services are largely restricted and monopolized by a few private en-
terprises, incurring a high cost for a regular supply of new samples.
Third, executing malware and eliciting their real-world behavior
in a laboratory setting is challenging. Researchers typically priori-
tize safety and rely on non-connected virtualized frameworks for
analyzing malware. However, modern malware can easily identify
artifacts of such test environments and choose not to execute, thus
evading analysis [40]. Consequently, the data collected does not
represent malware behavior in the wild. In fact, a precise collec-
tion of close-to-real-world behavior requires timely execution of
malware in unrestricted real-world conditions connected to the
Internet, when its C&C servers are likely to be still active.

We propose an alternate model of malware behavior-as-a-service
to meet the demands for the safe execution of samples. Such amodel
enables the users to submit hashes of malware samples for analysis
and retrieve their precise and comprehensive run-time trails. We
argue that such a comprehensive view of raw run-time data can
replace the distribution of live malware samples, as behavioral
research primarily relies on passively observable run-time trails
rather than the malware executable contents.

To this end, we present JUGAAD, a framework to facilitate a
comprehensive behavior-as-a-service for malware research. The
framework shown in Figure 1 consists of a front-end that responds
to user requests, a growing data corpus of precise and comprehen-
sive malware behavior, and a back-end that continually feeds the
data-corpus. The front-end provides API for users to submit pro-
gram hashes or files and in return, outputs the corresponding data
retrieved from the corpus. In cases where the data corresponding
to the requested hash/file is not present in the corpus, the front-end
submits the request to the back-end for processing. The back-end ex-
ecutes a supply of live malware samples on a real-world testbed and
updates the collected behavior to the data-corpus. The testbed with
Internet connectivity ensures real-world conditions for malware
to operate while containing their malicious ramifications. Thus,
JUGAAD alleviates the risks of handling and executing malware to
the research community by facilitating the out-sourcing of the pre-
cise collection of malware behavior. The sustenance of the growing
data corpus relies upon a continual supply of malware samples that

is augmented by a regular feed from online repositories and files
uploaded by users who use the JUGAAD service.

Following are the major contributions of this paper:

(1) A first-of-its-kind behavior-as-a-service model to provide
precise and comprehensive real-world malware behavior for
research, instead of the distribution of the risky malware
samples. Unlike prior malware behavioral datasets [17, 18,
43, 52, 56], the growing corpus of malware behavior keeps
JUGAAD up to date with the changing malware landscape.

(2) A real-world testbed ensuring close-to-real-world hetero-
geneous compute and Internet connectivity, with sufficient
triggers for malware execution, demonstrated with 515 off-
the-shelf devices.

(3) A framework with mechanisms for a comprehensive view
of run-time malware activity observable across network, OS,
and hardware. Unlike prior malware testbeds that support
the collection of network and OS trails alone [5], JUGAAD
provides simultaneous capture of hardware behavior along
with these run-time trails.

(4) A framework with mechanisms for timely and large-scale
execution of malware samples, tested up to 255 samples per
day per network (58.6% faster than prior malware testbeds).

Following is the organization of rest of the paper. Section 2 pro-
vides the necessary background for the paper. Section 3 presents the
related work. Section 4 discusses how a comprehensive behavior-
as-a-service model can replace the need for distribution of malware
samples. Section 5 describes the framework. Section 6 presents
the implementation details. Section 8 discusses the limitations and
future work in JUGAAD. Finally, section 9 concludes the paper.

2 BACKGROUND
Malware detection takes two broad directions based on the data
they employ for analysis. Static analysis examines the contents of
malware executable binaries to extract signatures and imply its ma-
liciousness. However, such static signatures can be easily thwarted
by techniques such as packing and obfuscation that change the
malware binary without affecting its functionality. An alternate
approach to malware detection is dynamic analysis, wherein mali-
ciousness is inferred using the run-time behavior of malware. As
the detection relies on observable behavior, dynamic analysis is
immune to techniques that typically evade static analysis.

Behavioral Analysis.Dynamic analysis adopts two approaches to
analyze malware. Active techniques [32, 42] repeatedly instrument
the malware binary before execution to explore all execution paths
in the malware, whereas passive techniques [4, 10, 57] merely exe-
cute malware and observe the behavioral trails. While such passive
behavioral analysis can analyze the executed path alone, they are
immune to evasive malware that can easily detect the instrumenta-
tion done by active techniques and choose not to execute [36].

Artificial intelligence (AI) driven run-time behavioral analysis
has recently gained traction due to its upper edge in defense against
evolving malware. Such techniques model good behavior and at-
tempt to detect anomalies, thus facilitating zero-day malware de-
tection. Primary to fostering such research is the availability of
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ground-truth of malware behavior in the wild. However, collect-
ing a precise representation of real-world malware behavior in a
laboratory setting is challenging.

Conditions for Executing Malware. Malware execution can be
catastrophic. Consequently, researchers typically rely on virtualized
non-connected analysis environments to execute malware. How-
ever, modern malware is also evasive. They look for real-world
conditions before they reveal their offensive behavior. Hence, they
can quickly identify artifacts of analysis environments to detect
them and remain dormant. Further, malware communications to
its C&C servers are vital for its execution, calling for an active
Internet connection while executing malware. Thus, eliciting real-
world behavior requires executing malware in real-world connected
environments while ensuring the containment of its ramifications.

Challenges in Large-Scale Analysis. Malware also poses chal-
lenges to large-scale evaluations. Specifically, malware execution
impacts the system state in the analysis frameworks. Hence, each
sample should be evaluated in a clean initial state of the frameworks.
Resetting the analysis frameworks to their initial state makes large-
scale analysis of thousands of samples time-consuming. Further,
malware execution can cause frequent system crashes and halts
beyond recovery using remote commands, requiring hard power
restarts that significantly affect the large-scale automated analysis.

3 RELATEDWORK
The demand for malware behavioral data in research is addressed
using three approaches, namely, download of old malware samples,
supply of live malware samples, or behavioral datasets, as discussed
next.

Downloading older malware samples. Many online reposito-
ries allow researchers to download a corpus of malware samples
that are a few years old [9]. However, with their C&C servers not
available, most malware samples quit execution prematurely with-
out exhibiting their real-world behavior.

Supply of live malware samples. Private enterprises such as
VirusTotal provide premium services to download live malware
samples [33, 39]. While such services are highly-priced at 82K$ for
12K malware samples a year, the main challenge lies in the safe
handling and execution of these live malware samples.

Datasets of malware behavior. Multiple prior datasets present
malware behavior for research [4, 15–18, 23, 35, 41, 43, 53, 56]. How-
ever, most of these works rely on virtualized analysis environment,
thus lacking precise real-world behavior [16–18, 23, 35, 43, 52, 56].
On the other hand, datasets generated in real-world conditions
are not open to the community [4, 15, 41, 53]. Additionally, these
datasets are static with no mechanisms to keep pace with the evolv-
ing malware landscape.

In contrast, JUGAAD facilitates behavioral data-as-a-service to
researchers. While it offloads the safe execution of live samples,
it facilitates a dynamic and growing data-corpus that is regularly
augmented with lately reported live samples.

Figure 2: Behavioral data employed by prior research in the
past decade

4 COMPREHENSIVE BEHAVIORAL DATA AS
AN ALTERNATIVE TO MALWARE SAMPLES

JUGAAD advocates the distribution of malware behavioral data
instead of live malware samples. The natural question is whether
data can replace the need for distributing live samples in malware
behavioral research. To answer this question, we first investigate
the vast body of literature on dynamic malware detection to identify
run-time characteristics that were used. Further, we show that any
two programs can be distinguished by the run-time behavior.

Usage of samples in prior works. Figure 2 provides a summary
of the run-time characteristics employed by 400 most cited prior re-
search in dynamicmalware detection since 2010. These works either
rely on available datasets or generate data by executing malware
for their research. The run-time trails of malware are observable at
network (for instance, [1, 2, 4, 7, 8, 12, 18, 25–27, 31, 38, 43]), operat-
ing system (OS) (for instance, [6, 7, 10, 15, 17, 24, 26, 31, 34, 44, 56]),
or, hardware (for instance, [3, 11, 19–21, 37, 41, 45, 49, 58, 59]). The
network trails capture malware communications, including that to
its command-and-control (C&C) servers. On the other hand, OS
trails present the system calls (for e.g. file or registry operations)
made by the malware. In contrast, hardware trails include the micro-
architectural events (e.g., number of cache misses) triggered during
malware execution. These hardware events are measurable using
hardware performance counters (HPC) available in modern proces-
sors [41]. More recently, researchers have explored the potential
of memory snapshots to detect malware using a technique called
volatile memory acquisition (for instance, [13, 47, 50, 51]).

Change in the program leads to change in behavioral trails.
We argue that any change in a program leads to a change in run-time
characteristics that can be visible in the artifacts captured during
malware execution. These differences are evident in a comprehen-
sive view of malware behavior. To verify the same, we consider
a corpus of 10,000 programs containing an even distribution of
benign, ransomware, downloader, cryptominer, deceptor, poten-
tially unwanted applications, spyware, and backdoor programs.
Figure 3 plots the distribution of pair-wise dissimilarity between
the behavioral features observed in three example artifacts captured
across the system stack, namely, network, OS, and hardware. The
dissimilarity between two programs p1 and p2 is defined as:

dissimilarity(p1, p2) = 1 − cosine_similarity(p1, p2) , (1)
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Figure 3: The dissimilarity between samples across the different
run-time data trails. The rectangular boxes highlight the range of
50% of values in the distribution (i.e., the values between the first
(Q1) and third (Q3) quartile). The horizontal line through the box
indicates the median. The whiskers from each box represent the
minimum and maximum in the distribution. The values between
the minimum and Q1 (lower edge of the box) represent 25% of the
values. Similarly, the values between the maximum and Q3 (upper
edge of the box) indicate the remaining 25% of the distribution.

which measures the difference between the behavioral feature vec-
tors of the two programs1. A dissimilarity of 0 indicates that the two
programs have identical run-time trails, whereas 1 suggests that
the two are distinct. Thus, most programs (>= 75%) differ in their
network and OS behavior by a dissimilarity measure of 0.3−0.7 and
0.15 − 0.7, respectively. On the other hand, the hardware trails are
comparatively more distinguishable with a dissimilarity of 0.3− 0.9
for most programs. While different artifacts can individually dis-
tinguish programs in varying capacities, a comprehensive view of
these artifacts can capture most differences between the programs.

In the current implementation, JUGAAD provides simultaneous
capture of three artifacts, including network, OS, and hardware
behavior, that are predominantly used (Figure 2) for their effective-
ness and decreased overheads in dynamic malware detection. For
comprehensiveness, we intend to include memory snapshots and
other trails such as instruction and power traces in JUGAAD, which
we leave for future work.

5 JUGAAD FRAMEWORK
In this section, we discuss the JUGAAD framework, including its
front-end and back-end, as shown in Figure 1. The front-end han-
dles the user requests, whereas the back-end is responsible for the
precise and comprehensive collection of malware behavior.

5.1 Front-end
The front-end presents the following Application Programming
Interface (API) calls to the users to access the JUGAAD behavior-
as-a-service as described in Figure 4.
Get data for hash. The API GetDataForHash (hash h), allows the
users to submit the hash h of a program and request for its behav-
ioral data. In response, the front-end extracts the corresponding
behavioral data from the data-corpus and returns it to the user as

1Cosine similarity measures the similarity between two vectors, and is measured by
the cosine of the angle between two vectors.

YesIs data of hash 

h present


 in corpus?

Check if data of h is present in
corpus

GetDataForHash (hash h)

Return Data

GetDataForProgram (program p, platform f, <time t> )

Invoke back-end




Data = Execute_Collect  (p, f, t)

/*Back-end executes p and returns the Data */

Return Data;


No

Return ERROR
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Data = Extract
data of h from

corpus

Figure 4: The APIs presented by JUGAAD front-end to the users.
The API GetDataForFolder is similar to GetDataForProgram, where
the former takes a folder of programs as input.

shown in Figure 4a. In cases where the data corresponding to the
hash is not present in the data-corpus, the front-end returns an
error.
Get data for a program. The API GetDataForProgram (program
p, platform f, ⟨ time t ⟩), allows the users to submit a program
executable and request for the corresponding behavioral data. The
input includes the program executable p, the platform f (e.g., Linux,
Windows, Android) on which the program needs to be executed,
and optionally, the time duration t for which the program execu-
tion should be observed while collecting the behavioral trails. In
response, the front-end raises a request to the back-end, which
executes the program for a time duration t and collects its behav-
ioral trails. The collected trails are saved to the data-corpus and
returned to the user. By default, the time duration t is configured
as 2 minutes at the back-end, which is considered to be sufficient
to elicit most of the malicious behaviors of malware [22].
Get data for a folder of samples. Alternatively, users may want
to upload multiple files at once for the collection of behavioral trails.
To this end, the API

GetDataForFolder (program_folder F , platform f, ⟨ time
t⟩), allows users to submit a folder of programs, along with speci-
fying the platform and time for executing each sample in the folder.
The front-end invokes the back-end to execute and collect the be-
havior of the samples and return the data to the user.

5.2 The Back-end
The primary functionality of the back-end is to supply precise close-
to-real-world and comprehensive malware behavior to the data-
corpus, which is used to serve the users. JUGAAD ensures precise
behavioral data by facilitating: (1) timely execution of malware
when their short-lived remote command and control (C&C) servers
are highly likely to be active, and, (2) connected, yet contained real-
world environment for the malware to execute. On the other hand,
it facilitates a comprehensive view of malware activity with simul-
taneous capture of run-time trails across the system stack. Figure 5
illustrates the back-end of JUGAAD. The update and test engines
together ensure a regular and timely update of the data-corpus to
service the user requests. On the other hand, the real-world testbed
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provides connected real-world conditions for malware to operate
while containing its malicious repercussions, and mechanisms to
observe its comprehensive behavior.

5.2.1 Timely Analysis of Malware. Algorithm 1 describes the
working of the update and test engines. The update-engine pe-
riodically crawls public malware repositories for newly reported
malware and downloads them to its local supply of samples (Step
3-8). Further, the test-engine executes these samples immediately
after the download on the real-world testbed. The timely execution
ensures that the samples are executed when their C&C servers are
still available. During the execution, the test engine collects multiple
run-time artifacts (e.g., network communications, OS system calls,
and micro-architectural events) across the system stack, which are
later added to the data-corpus (Execute_and_Collect in Step 9).
The default time for analyzing each sample is set as 2minutes based
on prior research on the minimum time window required to observe
most of the malicious behaviors of malware [22]. Additionally, the
test-engine services the user-submitted requests for data collection
(Steps 10-15). It executes the programs submitted by the users and
collects the behavioral trails, which are stored in the data-corpus
and returned to the users (Step 15). Thus, the Algorithm 1 ensures
the timely execution of a regular feed of new malware samples
reported in the wild to maintain a growing data-corpus.

5.2.2 Real-world Environment. Modern malware are known
to look for real-world conditions such as a network of diverse phys-
ical machines and Internet connectivity before they reveal their
malicious behavior (refer Section 2). To this end, the real-world
testbed provides a heterogeneous network of machines that can
be employed as a profiler to execute malware. The testbed consists
of desktop computers and single-board embedded platforms with
varying operating systems (e.g., Linux, Windows). The diversity
in machines and software environments not only provides suffi-
cient triggers for malware to execute, but also enables JUGAAD
to execute malware of diverse platforms. The testbed with auto-
configuration capability is open, wherein new machines with spe-
cific environments can be added to the testbed seamlessly. Though
these machines are connected in a bus topology, the testbed also
can facilitate user-specific topologies for advanced analysis, such
as the study of malware propagation.

Internet Connectivity andContainment. To provide connectiv-
ity while containing the ramifications, the back-end uses a dedicated
Internet connection (ERNET [14]) that is isolated from the univer-
sity network. Further, it connects to the Internet via a two-level
firewall, as highlighted in Figure 5, which ensures containment of

Algorithm 1: JUGAAD Back-end
1 begin
2 while true do

/* Update Engine */

3 Crawl online repositories for newly reported samples
4 if updates are available then
5 NewhashList← Hashes of newly reported malware

samples
6 for h ∈ NewHashList do
7 p← Download hash h

8 Supply-of-Samples← p

/* Test Engine */

9 Data-Corpus← Execute_Collect (p)

10 Check for requests from front-end
11 if requests queued from front-end then
12 ListOfPrograms← List of programs submitted by

user
13 for p ∈ ListOfPrograms do
14 Supply-of-Samples← p

// Test Engine

15 Data-Corpus← Execute_Collect (p)

the malicious impact of executing malware, while allowing the mal-
ware to operate. The firewalls permit incoming communications
to allow the malware to communicate with its C&C servers, while
extensively scrutinizing outgoing communications to prevent mali-
cious behavior from permeating outside the testbed. Implementing
the two levels with different firewall models has advantages. The
malware would need to compromise two separate firewalls to infect
machines outside the testbed, which are less likely to be susceptible
to the same malware. Likewise, external attackers would need to
compromise two firewalls to attack the testbed.

While the firewalls allow initial handshakes of connections,
it limits the rate or drops packets when the following scenar-
ios/triggers from the testbed cross their respective thresholds: (i)
DoS attempt: a high rate of outgoing packets from any machine; (ii)
TCP Scan: a significant number of half-open TCP connections over
time; (iii) SPAM: the number of email messages from the testbed;
(iv) UDP Scan: the ratio of UDP packets from the malware to the un-
successful responses (e.g., Internet Control Message Protocol port
unreachable) received. While there is a possibility of some attacks
like DoS to persist when network traffic patterns do not match the
firewall rules, the risk is not unacceptably high. This is because the
running time of every sample is restricted to a threshold, typically
2 minutes based on prior research [22]. After the execution, all
machines in the testbed are reset to their clean initial state, which
reduces the risk of spam, DoS, or unpredictable behavior to a small-
time duration defined by the threshold. Finally, these rules are not
exhaustive and would require continual monitoring and updates
based on the malware classes that are being analyzed.

Stateless Evaluations. Each malware sample should be evaluated
in a clean initial state or baseline of the testbed (refer Section 2).
Unlike virtual machines, which can be easily reset to their baselines,
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resetting all physical machines in the testbed for every sample exe-
cution is not trivial. To this end, JUGAAD employs a two-level reset
mechanism as shown in Figure 6. The first level involves a quick
low-overhead baseline-reset using software methods to restore a
physical machine to its saved clean baselines on restart. JUGAAD
initiates a baseline-reset with a restart of all machines using re-
mote commands. In cases where the malware makes the system
inaccessible remotely, JUGAAD uses the smart power switches to
hard-restart the machines. Further, critical faults may arise, cor-
rupting the baselines such that the baseline restore fails. Only in
such scenarios JUGAAD performs an image-reset, which involves
reloading of respective OS images from an image server.

5.2.3 Comprehensive collection of malware behavior. Fig-
ure 7 illustrates the working of the test-engine (Execute_and_
Collect) to collect the comprehensive behavior of malware. First,
it begins by resetting all the testbed machines to their clean base-
lines. Second, it chooses an appropriate machine in the testbed as a
profiler to execute malware, and pushes the malware sample to it.
For instance, it chooses a Windows machine to evaluate a Win32
malware. Third, it initiates the data collection. It starts the corre-
sponding tools to capture artifacts inside the profiler. For instance,
to capture OS system call trails, it starts the process monitoring
tool [29] at the profiler. However, it is beneficial to observe some ar-
tifacts from outside the profiler. For instance, observing the network
communications at the gateway that connects the testbed to the
Internet, can capture not only the communications from the profiler
but also malware interactions and their impact on other testbed
machines. Accordingly, the test-engine starts such external tools at
corresponding vantage points. Fourth, the test-engine executes the
sample for a configured duration or provided by the user. Fifth, it
stops the execution and the data collection tools. Finally, it saves
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Figure 8: The implementation of back-end in JUGAAD

all the collected trails to the data-corpus along with the IP address
of the profiler, and the process ID of the malware executable at the
profiler.

6 IMPLEMENTATION
In this section, we discuss the implementation details of the JU-
GAAD framework.

We implement the front-end as an HTTPS web server in python
to provide a public web interface to submit the program hash or
files. The server also provides an HTTP-based public API to en-
able users to script submissions in any programming language.
Inspired by software-defined networking, we divide the back-end
into planes, namely gateway, control-plane, and testbed, to sup-
port customization and reconfiguration, as shown in Figure 8. The
gateway connects the back-end to the Internet via a dedicated IP
address in ERNET [14]. It also houses the update engine that feeds
the supply of samples. The control-plane contains the configuration
and test engines to initialize, operate and automate the back-end.
We implement these modules using bash scripts and Python. While
the configuration engine initializes the testbed (for e.g. software
environment), the test engine automates the execution and data
collection on the testbed. Table 1 lists the gateway, control-plane
and testbed machines that are connected as in Figure 8 to realize
the JUGAAD back-end. We next explain the implementation of
timely analysis and the comprehensive data collection discussed in
Section 5.2.

6.1 Timely Analysis
To facilitate access to newly reported malware, JUGAAD has sub-
scriptions to premium services from online malware repositories
such as Virustotal [54] that provide a daily feed of requested
samples. We implement the back-end algorithm (Algorithm 1) in
Python, which accesses the APIs provided by Virustotal to crawl for
the availability of samples and download them. These samples are
immediately executed by the test engine to ensure timely analysis.
Test engine (Execute-Collect). We implement the test engine
in Python. For Windows-based profiler machines, the test engine
uses PowerShell Remoting and psexec tool to remotely trigger
the malware execution [28]. However, when remote execution is au-
tomated, the malware executes in the background without popping
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Table 1: Devices in the open testbed

Device Description OS Count Role

Desktop Intel i7, 8 cores, 64GB RAM,
2 1G Ethernet ports

Ubuntu
v17.10 1 Gateway

Desktop Intel i7, 8 cores, 64GB RAM,
2 1G Ethernet ports

Ubuntu
v18.04 1 Control

Plane

Desktop Intel i5, 8 cores, 16GB RAM
, 1G Ethernet port Win 10 Pro 2 Testbed

Desktop Intel i7, 8 cores, 64GB RAM
, 2 1G Ethernet ports

Ubuntu
v16.10 1 Testbed

Desktop Intel x86 Atom, 1 Core, 2GB
RAM, 1G Ethernet port

Win 7
Win 10 10 Testbed

Raspberry
Pi 3 B+ 2

ARM Quad core, 1GB RAM,
1G Ethernet

Linux
v3.14 2 Testbed

Galileo
Gen 2

Intel Quark SoC 256MB RAM,
1G Ethernet

Linux
v3.14 500 Testbed

Figure 9: The testbed in JUGAAD

its GUI window. To get the malware executed in the foreground, we
configure the psexec tool to run the malware in the system account.
For Linux-based machines, the test engine uses SSH service to push
and execute a malware sample. The test engine also monitors the
health of machines with a dummy SSH connect request. In case of
a failure, it notifies the administrators with an email and resets the
testbed using the smart power switch.

6.2 Real-world testbed
Figure 9 shows the real-world testbed we built in our lab in the
back-end. We connect all machines in the testbed (refer Table 1) in
a hierarchical bus topology using 28-port D-Link DGS-1210-24 and
24-port HPE-1920s switches. The testbed is open and scalable, as any
new hardware with an Ethernet port can be connected to the switch
to include in the network. It is also powered using WiFi-enabled
smart switches to enable remote hard-restart of the testbed in cases
of failures. Each machine in the testbed is assigned its management
IP address at power-on by the Dynamic Host Control Protocol
(DHCP) server at the control-plane. The control-plane configures

and manages the testbed using the management IP addresses of the
devices.

In the current implementation, all machines in the testbed are
under one network. It is important to note that simultaneous exe-
cution of more than one malware sample would affect the precision
of data as each sample can affect the system state in the entire
network. The number of samples analyzed per day can be increased
if we can divide the testbed into isolated virtual local area networks
(VLAN). With the infrastructure of smart network switches (HPE-
1920s switches), we intend to implement VLANs in future to enable
parallel analysis of multiple samples. Further, we intend to enable
custom topologies and forwarding behavior in the testbed in the
future to facilitate long-term analysis such as malware propagation.
Heterogeneity. As evident from Table 1, the testbed has a hetero-
geneous mix of hardware (Raspberry Pi, Intel x86 Atom, Quark,
i5, and i7 machines) and operating systems (different versions of
Linux and Windows) to realize close-to-real-world conditions.
Isolation and Containment. JUGAAD uses a combination of
Snort Intrusion Detection System [46] and Zeek network anal-
ysis framework [60] at the control-plane and gateway. While Snort
can detect known exploits, Zeek can detect protocol violations and
malformed headers using the built-in and custom scripts.
Stateless Evaluations. For baseline-reset, JUGAAD uses software
like Reboot Rx on Windows and SystemBack on Linux [48]. The
test-engine initiates a baseline-reset with an SSH command or a
power-restart using the smart power switches in cases of SSH fail-
ures. During the operation of JUGAAD, we observed the need for
such power-restart in several instances. In either case, the baseline-
reset of all machines finishes in ≈ 2.64 minutes. For image-reset,
JUGAAD loads the affected device with the OS image (created us-
ing Clonezilla disk imaging software) from a locally maintained
image-server. However, image-reset is very rare, as we did not
encounter any need for it during the analysis of more than 10K
samples.

6.3 Comprehensive collection
In the current implementation, JUGAAD provides simultaneous
capture of three artifacts, including network, OS, and hardware
behavior. The control-plane captures network communications us-
ing tshark [30]. While external communications pass through the
control-plane, inter-device communications in the testbed are mir-
rored to the control-plane using port-mirroring feature of the man-
aged switches. At the profiler machine, we use process monitor
for Windows, and strace for Linux to capture OS events of the
malware process [29].

For HPCs, we use different interfaces based on the environment.
While Linux provides perftool APIs to configure and fetch the
counters from the userspace, the Windows OS requires some mod-
ifications. We design a custom Windows 10 Driver to read HPCs,
configurable as per the underlying hardware and available events.
Based on empirical observations, we configure the frequency of
event logging to 10ms. It is critical to note that while the hardware
may support hundreds of micro-architectural events, the number
of HPC registers available physically is limited to 4-6 on most archi-
tectures. While time-multiplexing these events across the registers
is a work-around, it can induce significant noise in the data. We
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Figure 10: Evasion techniques found in 1000 randomly selected
samples. Malware samples check for specific artifacts to identify
virtualized analysis environments.

address this challenge with multiple binary executions, where lim-
ited events are counted during each execution. Finally, to prevent
the corruption of collected OS and hardware data by malware like
ransomware, they are temporarily stored in system folders (such
as C :\Windows\Temp\) before being moved to the data corpus.

7 EVALUATION
In this section, we evaluate the precision of data collection in JU-
GAAD, the time taken for analysis, and the storage requirements
of the data-corpus.
Precise collection of behavior.Modern malware are evasive and
adopt diverse techniques to remain dormant in virtualized analysis
environments [40]. We determine if JUGAAD is able to execute and
observe the behavior of such malware. We take a random set of 1000
malware samples. We verify their system call traces to determine
if these samples query for any specific information that aids in
identifying analysis environments, such as differentiating virtual
and physical machines. Figure 10 plots the count of samples using a
subset of 12 techniques typically used for evasion [40]. We observe
that at least 17% of samples had the signature system call to check
if the hard-disk drive size and free space are small. More than 50%
of samples verified the network MAC address, adapter name, and
provider before continuing execution. The real-world conditions
and the Internet connectivity enabled JUGAAD to ensure malware
continues execution beyond these checks in their code.
Analysis Time. Table 2 computes the time taken by the back-end
to analyze a given program sample. Analysis of each sample takes
≈ 338 seconds which includes steps 1-7 in Figure 7. The test-engine
takes ≈ 158 seconds to reset the state of all testbed machines to
their clean baselines in step 1. Hence, JUGAAD can analyse ≈ 255
malware samples per day (refer Table 2). The table also compares
the time for state reset in JUGAAD with techniques used in public
testbeds like DETER[12]. The two-level reset feature in JUGAAD
(refer Section 5.2.2, Figure 6) enables 58.6% times faster reloads
compared to DETER. The shorter time taken for state resets enables
more number of sample analysis (255 per day per network) in
JUGAAD as compared to DETER (154 per day per network).

We intend to increase the number of samples analyzed per day in
JUGAAD by dividing the testbed into isolated VLANs. The current
infrastructure of smart network switches (HPE-1920s switches)
can easily enable such configurations to enable parallel analysis of
multiple samples.

Figure 11: Growing data-corpus over years

Table 2: Time taken by JUGAAD back-end per sample (refer Fig-
ure 7)

Testbed
Baseline-reset

(Step 1)
Experiment
(Steps 2-7)

Time/
sample

Samples/
/day

JUGAAD 2 m 38 s 3 m 5 m 38 s 255
DETER 6 m 23 s 3 m 9 m 23 s 154

Growing data-corpus. To date, the data-corpus has 2.7 TB of data
and 22M behavioral snapshots of 10,432 malware samples, including
7M network packets, 11.3M operating system call traces, and 3.3M
micro-architectural events from hardware for 8 classes of malware.
Table 3 shows the distribution of malware samples collected in the
growing dataset. Figure 11 plots the growing storage requirements
of the data-corpus in JUGAAD.

Table 3: Distribution of malware classes in the data-corpus

Class % Class % Class %

Backdoor 13.5% Spyware 16% Ransomware 7.5%
Banker 14% Benign 7% Downloader 19.4%
PUA 10.8% Deceptor 10.8% Cryptominer 4.9%

8 DISCUSSION
We present a discussion on the comprehensiveness of the data
collection and the sustenance of JUGAAD behavior-as-a-service
model.
Comprehensive malware behavior. Malware behavior mani-
fests through diverse artifacts that can be captured across the sys-
tem stack during its execution. While network, OS, and hardware
trails have been widely employed for their improved detection
capabilities, many other run-time artifacts can be employed for
detecting malware. Recently, the potential of memory snapshots,
register contents, instruction opcode traces, and power traces have
been explored to detect malware. Such collection modules can be
easily plugged into the data collection framework of JUGAAD in
Figure 7. We leave the inclusion of other such modules and novel
artifacts for malware detection into JUGAAD as future work.
Sustenance. Sustaining the service model relies on a continual
supply of newly reported malware samples. JUGAAD bootstraps
such a supply with a premium subscription with private enterprises
for downloading samples. However, with the continual operation
and increasing user base, we envision a constant supply of malware
samples from the users to ensure a growing data-corpus of malware
behavior.
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9 CONCLUSION
This paper presents JUGAAD, a malware behavior-as-a-service
to present precise and comprehensive malware run-time charac-
teristics for research. The beneficiaries of JUGAAD are malware
researchers in academia and industry. It offloads the time and
efforts of setting up a real-world evaluation infrastructure for
comprehensive data collection, while alleviating the high risks
involved in handling and executing potent malware. Prior efforts
that provide malware analysis services present inferences on
maliciousness of the user-submitted samples, that are limited by
the capabilities of available state-of-the-art detection engines. In
contrast, JUGAAD provides an unbiased comprehensive view of
real-world malware behavior, enabling researchers to quickly
explore and compare detection mechanisms to counter the evolving
malware landscape.
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